首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Origin of rapidly solidified metal-troilite grains in chondrites and iron meteorites
Authors:Edward RD Scott
Institution:Institute of Meteoritics and Department of Geology, University of New Mexico, Albuquerque, New Mexico 87131, USA
Abstract:Inclusions of troilite and metallic Fe,Ni 0.2–4 mm in size with a dendritic or cellular texture were observed in 12 ordinary chondrites. Cooling rates in the interval 1400?950°C calculated from the spacing of secondary dendrite arms or cell widths and published experimental data range from 10?7 to 104°C/sec. In 8 of these chondrites, which are breccias containing some normal slow-cooled metal grains, the inclusions solidified before they were incorporated into the breccias. Their cooling rates of 1–300 °C/sec indicate cooling by radiation, or by conduction in contact with cold silicate or hot silicate volumes only 6–40 mm in size. This is quantitative evidence that these inclusions and their associated clasts were melted on the surface of a parent body (by impact), and were not formed at depth from an internally derived melt. In Ramsdorf, Rose City and Shaw, which show extensive reheating to ? 1000°C, Fe-FeS textures in melted areas are coarser and indicate cooling rates of 10?1 to 10?4°C/sec during solidification. This metal may have solidified inside hot silicate volumes that were 10–300 cm in size. As Shaw and Rose City are breccias of unmelted and melted material, their melted metal did not necessarily cool through 1000°C within a few m of the surface. Shock-melted, fine-grained, irregular intergrowths of metal and troilite formed in situ in many irons and some chondrites by rapid solidification at cooling rates of ? 105°C/sec. Their kamacite and taenite compositions may result from annealing at ~250°C of metallic glass or exceedingly fine-grained quench products.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号