首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modelling argon dynamics in first-year sea ice
Institution:1. Georges Lemaître Centre for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium;2. Laboratoire d’Océanographie et du Climat, Institut Pierre-Simon Laplace, CNRS/IRD/UPMC/MNHN, Paris, France;3. Laboratoire de Glaciologie, Faculté des Sciences, Université Libre de Bruxelles, 50 Avenue F.D. Roosevelt, 1050 Bruxelles, Belgium;4. Unité d’océanographie chimique, MARE, Université de Liège, Belgium;1. Laboratoire Interfaces et Systèmes Electrochimiques (LISE), UPR 15 du CNRS, Centre National de la Recherche Scientifique (CNRS), 4 place Jussieu, 75005 Paris, France;2. LISE, Université Pierre et Marie Curie-Paris 6 (UPMC), 4 place Jussieu, 75005 Paris, France;3. Departament de Química Física, Universitat de València. C/Dr. Moliner, 50, 46100, Burjassot, València, Spain;1. Laboratoire de Photonique d''Angers EA 4644, Université d''Angers, 2 Bd Lavoisier, 49000 Angers, France;2. Institute of Automation and Electrometry, Russian Academy of Sciences, Acad. Koptyug Pr. 1, 630090 Novosibirsk, Russia;1. IRTES-LERMPS, UTBM, Site de Montbéliard, F90010 Belfort Cedex, France;2. Unité de Catalyse et de Chimie du Solide, UMR CNRS 8181, Université Lille 1, ENSCL, BP 90108, 59652 Villeneuve d''Ascq Cedex, France;1. Univ Lyon, ENTPE, LTDS UMR CNRS 5513, Rue Maurice Audin, F-69518 Vaulx-en-Velin Cedex, France;2. Univ Lyon, ENTPE, LGCB, Rue Maurice Audin, F-69518 Vaulx-en-Velin Cedex, France
Abstract:Focusing on physical processes, we aim at constraining the dynamics of argon (Ar), a biogeochemically inert gas, within first year sea ice, using observation data and a one-dimensional halo-thermodynamic sea ice model, including parameterization of gas physics. The incorporation and transport of dissolved Ar within sea ice and its rejection via gas-enriched brine drainage to the ocean, are modeled following fluid transport equations through sea ice. Gas bubbles nucleate within sea ice when Ar is above saturation and when the total partial pressure of all three major atmospheric gases (N2, O2 and Ar) is above the brine hydrostatic pressure. The uplift of gas bubbles due to buoyancy is allowed when the brine network is connected with a brine volume above a given threshold. Ice-atmosphere Ar fluxes are formulated as a diffusive process proportional to the differential partial pressure of Ar between brine inclusions and the atmosphere. Two simulations corresponding to two case studies that took place at Point Barrow (Alaska, 2009) and during an ice-tank experiment (INTERICE IV, Hamburg, Germany, 2009) are presented. Basal entrapment and vertical transport due to brine motion enable a qualitatively sound representation of the vertical profile of the total Ar (i.e. the Ar dissolved in brine inclusions and contained in gas bubbles; TAr). Sensitivity analyses suggest that gas bubble nucleation and rise are of most importance to describe gas dynamics within sea ice. Ice-atmosphere Ar fluxes and the associated parameters do not drastically change the simulated TAr. Ar dynamics are dominated by uptake, transport by brine dynamics and bubble nucleation in winter and early spring; and by an intense and rapid release of gas bubbles to the atmosphere in spring. Important physical processes driving gas dynamics in sea ice are identified, pointing to the need for further field and experimental studies.
Keywords:Argon  Sea ice  Modelling  Gas bubbles  Gas exchange
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号