首页 | 本学科首页   官方微博 | 高级检索  
     检索      


RAPTOR‐UAV: Real‐time particle tracking in rivers using an unmanned aerial vehicle
Authors:Philipp Thumser  Christian Haas  Jeffrey A Tuhtan  Juan Francisco Fuentes‐Pérez  Gert Toming
Institution:1. I AM HYDRO GmbH ‐ Investigation and Monitoring of Hydrosystems, St. Georgen, Germany;2. Centre for Biorobotics, Tallinn University of Technology, Tallinn, Estonia
Abstract:River system measurement and mapping using UAVs is both lean and agile, with the added advantage of increased safety for the surveying crew. A common parameter of fluvial geomorphological studies is the flow velocity, which is a major driver of sediment behavior. Advances in fluid mechanics now include metrics describing the presence and interaction of coherent structures within a flow field and along its boundaries. These metrics have proven to be useful in studying the complex turbulent flows but require time‐resolved flow field data, which is normally unavailable in geomorphological studies. Contactless UAV‐based velocity measurement provides a new source of velocity field data for measurements of extreme hydrological events at a safe distance, and could allow for measurements of inaccessible areas. Recent works have successfully applied large‐scale particle image velocimetry (LSPIV) using UAVs in rivers, focusing predominantly on surficial flow estimation by tracking intensity differences between georeferenced images. The objective of this work is to introduce a methodology for UAV based real‐time particle tracking in rivers (RAPTOR) in a case study along a short test reach of the Brigach River in the German Black Forest. This methodology allows for large‐scale particle tracking velocimetry (LSPTV) using a combination of floating, infrared light‐emitting particles and a programmable embedded color vision sensor in order to simultaneously detect and track the positions of objects. The main advantage of this approach is its ability to rapidly collect and process the position data, which can be done in real time. The disadvantages are that the method requires the use of specialized light‐emitting particles, which in some cases cannot be retrieved from the investigation area, and that the method returns velocity data in unscaled units of px/s. This work introduces the RAPTOR system with its hardware, data processing workflow, and provides an example of unscaled velocity field estimation using the proposed method. First experiences with the method show that the tracking rate of 50 Hz allows for position estimation with sub‐pixel accuracy, even considering UAV self‐motion. A comparison of the unscaled tracks after Savitzky–Golay filtering shows that although the time‐averaged velocities remain virtually the same, the filter reduces the standard deviation by more than 40% and the maxima by 20%. Copyright © 2017 John Wiley & Sons, Ltd.
Keywords:UAV  LSPIV  PIV  drone  velocimetry  river  particle tracking
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号