首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Jupiter's ammonia clouds—localized or ubiquitous?
Authors:SK Atreya  AS Wong  MH Wong
Institution:a Department of Atmospheric, Oceanic, and Space Sciences, The University of Michigan, Ann Arbor, MI 48109-2143, USA
b Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
c Astronomy Department, University of California, Berkeley, CA 94720, USA
d Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, USA
Abstract:From an analysis of the Galileo Near Infrared Imaging Spectrometer (NIMS) data, Baines et al. (Icarus 159 (2002) 74) have reported that spectrally identifiable ammonia clouds (SIACs) cover less than 1% of Jupiter. Localized ammonia clouds have been identified also in the Cassini Composite Infrared Spectrometer (CIRS) observations (Planet. Space Sci. 52 (2004a) 385). Yet, ground-based, satellite and spacecraft observations show that clouds exist everywhere on Jupiter. Thermochemical models also predict that Jupiter must be covered with clouds, with the top layer made up of ammonia ice. For a solar composition atmosphere, models predict the base of the ammonia clouds to be at 720 mb, at 1000 mb if N/H were 4×solar, and at 0.5 bar for depleted ammonia of 10−2×solar (Planet. Space Sci. 47 (1999) 1243). Thus, the above NIMS and CIRS findings are seemingly at odds with other observations and cloud physics models. We suggest that the clouds of ammonia ice are ubiquitous on Jupiter, but that spectral identification of all but the freshest of the ammonia clouds and high altitude ammonia haze is inhibited by a combination of (i) dusting, starting with hydrocarbon haze particles falling from Jupiter's stratosphere and combining with an even much larger source—the hydrazine haze; (ii) cloud properties, including ammonia aerosol particle size effects. In this paper, we investigate the role of photochemical haze and find that a substantial amount of haze material can deposit on the upper cloud layer of Jupiter, possibly enough to mask its spectral signature. The stratospheric haze particles result from condensation of polycyclic aromatic hydrocarbons (PAHs), whereas hydrazine ice is formed from ammonia photochemistry. We anticipate similar conditions to prevail on Saturn.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号