首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of wave groups on SSC patterns over vortex ripples
Authors:Paul V Villard  Philip D Osborne  Christopher E Vincent
Institution:a Department of Geography, Tamaki Campus, University of Auckland, Private Bag 92019, Auckland, New Zealand;b School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
Abstract:Estimates of spatial and temporal variations in suspended sand concentrations (SSC) made with a multi-transducer Acoustic Backscatter Sensor (ABS) under a repeated wave group over a mobile rippled bed in the wave research flume at the National Hydraulics Laboratory in Ottawa, Canada, reveal an number of complex and intriguing patterns. Ensemble averages of 8 nearly identical wave groups provided much more robust estimates of SSC and allowed a detailed examination of the wave group effects. The largest SSC near the bed (< 0.10 m) occurs in phase with the largest waves in the group. Above approximately 0.10 m elevation, SSC lags behind the near bed SSC by as much as 2–3 waves; introducing significant curvature (on a semi-log plot) to the SSC profile. The log linear segments of the SSC profile grow and decay systematically on the scale of the wave group. The range in lengths of log-linear profile segments (not, vert, similar 0.03–0.355 m) suggest that the boundary layer thickness also fluctuates throughout the passage of the wave group. Furthermore, there are significant variations in the patterns of SSC, which occur under the largest and smallest waves in the group. Under the largest waves vertical bands of alternating high and low SSC produce an intra-wave modulation in the upper water column (not, vert, similar 0.075–0.30 m). The equivalent horizontal excursion of these bands scales to the ripple length. Under the smaller waves the intra-wave modulation of the SSC disappears and is replaced by temporally homogenous suspension that expands vertically through several individual wave cycles. The former pattern of homogenous suspension appears to be associated with growth of a boundary layer due to the persistent uni-directional horizontal flow during this part of the group together with the persistence of antecedent bed generated turbulence and vorticity which maintains the suspension. The latter pattern of bands of high and low SSC indicates a strong temporal and spatial constraint on the SSC (phase coupling) induced by the presence of the bedforms which may be enhanced by strong reversals in both flow and vorticity under the large waves in the group.
Keywords:Wave groups  SSC patterns  Vortex ripples
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号