首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Basalt-andesite-rhyolite-H2O: Crystallization intervals with excess H2O and H2O-undersaturated liquidus surfaces to 35 kolbras,with implications for magma genesis
Authors:Charles R Stern  Wuu-Liang Huang  Peter J Wyllie
Institution:1. Lamont-Doherty Geological Observatory of Columbia University, Palisades, N.Y. USA;2. Department of Geology, National Taiwan University, Taipei USA;3. Department of Geophysical Sciences, University of Chicago, Chicago, Ill. USA
Abstract:Three rocks representing the calc-alkaline rock series gabbro-tonalite-granite or basalt-andesite-rhyolite were reacted with varying percentages of water in sealed capsules between 600 and 1300°C and pressures to 36 kbars, corresponding to depths of more than 120 km within the earth. For each rock we present complete P-T diagrams with excess water, and the water-undersaturated liquids surface projected from P-T-XH2O space mapped with contours for constant H2O contents and with the fields for near-liquidus minerals. All changes in liquidus and solidus slopes can be correlated with changes in mineralogy from less dense to more dense, or with expansion of crystallization fields, without appeal to changes in molar volume of H2O in liquid and vapor phases. The results indicate that tholeiites and andesites of the calc-alkaline series with compositions similar to the rocks studied are not primary magmas from mantle peridotite at depths greater than about 50 km. Primary andesitic magmas from shallower levels would require very high water contents and we do not believe such magmas could normally reach the surface. The liquids results are consistent with the derivation of andesites with little dissolved water as primary magmas from subducted ocean crust (quartz eclogite), but multi-stage models are preferred. Temperatures required for the generation of andesites by fusion of continental crust are higher than considered reasonable. The evidence precludes the generation of primary rhyolites or granites from the mantle of subducted oceanic crust at mantle depths. Primary rhyolite or granite magmas with moderate water contents (saturated or undersaturated) can be generated in the crust at reasonable temperatures, and could reach near-surface levels before vesiculation. Water-undersaturated granite liquid with residual crustal minerals could constitute plutonic magmas of intermediate composition.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号