首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Meander hydrodynamics initiated by river restoration deflectors
Authors:Tian Zhou  Ted Endreny
Institution:Department of Environmental Resources Engineering, State University of New York (SUNY) ESF, , Syracuse, 13210 USA
Abstract:River restoration projects have installed j‐hook deflectors along the outer bank of meander bends to reduce hydraulic erosion, and in this study we use a computational fluid dynamics (CFD) model to document how these deflectors initiate changes in meander hydrodynamics. We validated the CFD with streamwise and cross‐channel bankfull velocities from a 193° meander bend flume (inlet at 0°) with a fixed point bar and pool equilibrium bed but no j‐hooks, and then used the CFD to simulate changes to flow initiated by bank‐attached boulder j‐hooks (1st attached at 70°, then a 2nd at 160°). At bankfull and half bankfull flow the j‐hooks flattened transverse water surface slopes, formed backwater pools upstream of the boulders, and steepened longitudinal water slopes across the boulders and in the conveyance region off the mid‐channel boulder tip. Streamwise velocity and mass transport jets upstream of the j‐hooks were stilled, mid‐channel jets were initiated in the conveyance region, eddies with a cross‐channel axis formed below boulders, and eddies with a vertical axis were shed into wake zones downstream of the point bar and outer bank boulders. At half bankfull depth conveyance region flow cut toward the outer bank downstream of the j‐hook boulders and the secondary circulation cells were reshaped. At bankfull depth the j‐hook at 160° was needed to redirect bank‐impinging flow sent by the upstream j‐hook. The hooked boulder tip of both j‐hooks funneled surface flow into mid‐channel plunging jets, which reversed the secondary circulation cells and initiated 1 to 3 counter rotating cells through the entire meander. The main outer bank collision zone centered at 50° without the j‐hook was moved by the j‐hook to within and just beyond the 70° j‐hook boulder region, which displaced other mass transport zones downstream. J‐hooks re‐organized water surface slopes, streamwise and cross‐channel velocities, and mass transport patterns, to move shear stress from the outer bank and into the conveyance and mid‐channel zones at bankfull flow. At half bankfull flows a patch of high shear re‐attached to the outer bank below the downstream j‐hook. J‐hook geometry and placement within natural meanders can be analyzed with CFD models to help restoration teams reach design goals and understand hydraulic impacts. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:river restoration  river engineering  secondary circulation  CFD model  large eddy simulation  turbulent kinematic energy
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号