首页 | 本学科首页   官方微博 | 高级检索  
     检索      

岩浆-热液系统中铟的成矿作用
引用本文:陈程,赵太平.岩浆-热液系统中铟的成矿作用[J].矿床地质,2021,40(2):206-220.
作者姓名:陈程  赵太平
作者单位:中国科学院广州地球化学研究所矿物学与成矿学重点实验室,广东广州 510640;中国科学院深地科学卓越创新中心,广东广州 510640;中国科学院大学地球与行星科学学院,北京 100049;中国科学院广州地球化学研究所矿物学与成矿学重点实验室,广东广州 510640;中国科学院深地科学卓越创新中心,广东广州 510640
基金项目:本文得到国家自然科学基金项目;国家重点研发计划深地专项
摘    要:铟作为支撑新兴高科技产业发展的关键金属,主要应用于电子工业、半导体、焊料合金及航空航天等领域,对国家安全和经济发展至关重要.当前铟的重要来源是与花岗质岩浆有关的锡多金属矿床,其中铟的富集程度远超其他类型矿床.文章在简要概括铟矿床类型的基础上,探讨了铟在岩浆-热液系统各演化阶段的富集过程以及锡、铟同步富集的原因.在岩浆演...

关 键 词:地质学  关键金属  岩浆热液  铟矿床  闪锌矿  富集机制
收稿时间:2020/12/10 0:00:00
修稿时间:2021/2/8 0:00:00

Metallogenesis of indium in magmatic hydrothermal system
CHEN Cheng,ZHAO TaiPing.Metallogenesis of indium in magmatic hydrothermal system[J].Mineral Deposits,2021,40(2):206-220.
Authors:CHEN Cheng  ZHAO TaiPing
Institution:Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China;CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, Guangdong, China;College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Indium, as one of critical elements, is widely used in such high-tech industries as electronic industry, semiconductors, solder alloys and aerospace industries, thus playing a significant role in national security and economy. Since the indium concentration in granite-related tin polymetallic deposits are much higher than that in other types of deposits, the In-Sn polymetallic deposits are ideal for studying indium mineralization. Indium-rich deposits are known to be genetically associated with granitic magmatism. During magmatic evolution, the potentiality of indium ore formation decreases greatly if the main host minerals of indium, such as biotite and hornblende, crystallize and separate from the melt. In hydrothermal fluid, indium, which is closely associated with tin, can be transported in the form of chlorides, fluorides and hydroxides of indium. Such a process is controlled by temperature, pH as well as types and concentrations of ligands in ore-forming fluids. When indium precipitates, it mainly enters sulfides (e.g. sphalerite, chalcopyrite and tetrahedrite) due to similar ionic radius of In3+ to metal elements in Zn-Cu-bearing sulfides and decouples with tin. After precipitation, these indium-bearing minerals might undergo subsequent geological processes, resulting in reactivation, migration and diffusion of indium and contributing to further indium enrichment. The close association of tin and indium might result from similar geochemical behaviors. They are immobile in surficial environments and tend to remain in clay-rich sediments during chemical weathering, which would form biotite and muscovite during metamorphism. Then the breakdown of biotite at high temperature would result in synchronous enrichment of indium and tin in magma source. Recently, significant indium enrichments have been found in tin-poor polymetallic deposits associated with granitic magmatic hydrothermal systems, but the enrichment mechanism of indium in such a system remains unclear. Consequently, future studies should focus on the pre-enrichment processes of indium and tin as well as the enrichment mechanisms of indium in tin-poor polymetallic deposits so as to obtain a better understanding of the coupling and decoupling of tin-indium enrichment and the metallogenesis of indium.
Keywords:geology  critical metal  magmatic hydrothermal fluids  indium deposits  sphalerite  enrichment mechanisms
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《矿床地质》浏览原始摘要信息
点击此处可从《矿床地质》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号