首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemistry and mineralogy of the Late Permian coals from the Songzo Coalfield, Chongqing, southwestern China
Authors:Dai ShiFeng  Zhou YiPing  Ren DeYi  Wang XiBo  Li Dan and Zhao Lei
Institution:(1) State Key Laboratory of Coal Resources and Safe Mining (China University of Mining and Technology), Beijing, 100083, China;(2) Department of Resources and Earth Science, China University of Mining and Technology, Beijing, 100083, China;(3) Kunming Research Institute of Coal Science, Kunming, 650041, China
Abstract:Mineralogy and geochemistry of the four main workable coal seams (No.6, No.7, No.8, and No.11) of Late Permian age from the Songzao Coalfield, Chongqing, Southwest China, were examined using inductively coupled plasma-mass spectrometry (ICP-MS), X-ray fluorescence spectrometry (XRF), cold-vapor absorption spectrometry (CV-AAS), ion-selective electrode (ISE), scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer (SEM-EDX), and X-ray diffraction analysis (XRD). The results showed that the main workable No.8 Coal that accounts for about 60% of the total coal reserves in the Songzao Coalfield was not enriched in hazardous trace elements. The No.11 Coal has high concentrations of alkaline elements, Be (9.14 μg/g), Sc (12.9 μg/g), Ti (9508 μg/g), Mn (397 μg/g), Co (23.7 μg/g), Cu (108 μg/g), Zn (123 μg/g), Ga (32 μg/g), Zr (1304 μg/g), Nb (169 μg/g), Hf (32.7 μg/g), Ta (11.4 μg/g), W (24.8 μg/g), Hg (0.28 μg/g), Pb (28.1 μg/g), Th (24.1 μg/g), and rare earth elements (509.62 μg/g). The concentration of Nb and Ta in the No. 11 Coal is higher than the industrial grade, and their potential utilization should be further studied. Besides pyrite, quartz, calcite, and clay minerals, trace minerals including chalcopyrite, marcasite, siderite, albite, mixed-layer clay minerals of illite and smectite, monazite, apatite, anatase, chlorite, and gypsum were found in the No.11 Coal. It should be noted that alabandite of hydrothermal origin and anatase occurring as cement were identified in coal. In addition, the clayey microbands derived from alkaline volcanic ashes were identified in the coal. The dominant compositions of these clayey microbands were mixed-layer clay minerals of illite and smectite, which were interlayered with organic bands. The modes of occurrence of alkaline volcanic ash bands indicate that the volcanic activities were characterized by the multiple eruptions, short time interval and small scale for each eruption during peat accumulation. The alkaline volcanic ashes were the dominant factors for the enrichment of alkaline elements, Nb, Ta, Zr, Hf, and rare earth elements, and the sulfide minerals are the main carriers of Ga, Cu, and Hg in the No. 11 Coal. Supported by the National Key Basic Research and Development Program (Grant No. 2006CB202201), the National Natural Science Foundation of China (Grant No. 40472083), and the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200448)
Keywords:coal  trace elements  mineral  alkaline volcanic ash  Late Permian period  Songzao Coalfield
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号