首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Large capacity multi-float configurations for the wave energy converter M4 using a time-domain linear diffraction model
Institution:School of Mechanical,Aerospace and Civil Engineering, University of Manchester, Manchester M13 9L, United Kingdom
Abstract:The moored three-float line absorber WEC M4 has been developed to optimise power capture through experiments and linear diffraction modelling. With the progression down wave from small to medium to large floats, the device heads naturally into the wave direction. The bow and mid floats are rigidly connected by a beam and a beam from the stern float is connected to the hinge point above the mid float for power take off (PTO). Increasing the bow to mid float spacing to be more than 50% greater than the mid to stern float spacing has been found to improve power capture. To increase power capture further and potentially reduce electricity generation cost the number of mid floats and stern floats is increased while maintaining a single bow float for mooring connection. The bow and mid floats still form a rigid body while the stern floats may respond independently. A time domain linear diffraction model based on Cummins method has been applied to configurations of 121, 123, 132, 133, and 134 floats where the numbers indicate the number of floats: bow, mid, stern. This shows how power capture is increased while response remains similar. We only consider uni-directional (long-crested) waves with narrow band width typical of swell. By considering scatter diagrams for various offshore sites capacities may range from 3.7 MW to 17.3 MW for the eight float system with a capacity factor of 1/3 while the cost of electricity assuming capital cost to be a fixed multiple of steel cost is reduced from that for the three-float system.
Keywords:Wave energy converter M4  Multi-float  Multi-mode  Linear diffraction modelling  Cummins method  Large capacity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号