首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于遥感反射率的太湖优势藻识别方法
引用本文:朱雨新,李云梅,张玉,王怀警,蔡小兰,成鑫,吕恒.基于遥感反射率的太湖优势藻识别方法[J].湖泊科学,2023,35(1):73-87.
作者姓名:朱雨新  李云梅  张玉  王怀警  蔡小兰  成鑫  吕恒
作者单位:南京师范大学虚拟地理环境教育部重点实验室, 南京 210023;南京师范大学虚拟地理环境教育部重点实验室, 南京 210023;江苏省地理信息资源开发与利用协同创新中心, 南京 210023
基金项目:国家自然科学基金项目(42071299)、国家自然科学基金云南联合基金重点项目(U2102207)和江苏省林业科技创新与推广项目(LYKJ[2019]32)联合资助。
摘    要:我国淡水湖库频发水华,不同类群形成的水华特征、危害及其治理方法差异显著,因此,如何区分不同藻种的遥感反射率特征,获取湖泊优势种信息是一个亟待解决的科学问题。研究基于室内藻种培养实验,培养了富营养化湖泊中的典型蓝藻和绿藻藻种,其中,蓝藻包括铜绿微囊藻(Microcystis aeruginosa)、假鱼腥藻(Pseudanabaenasp.)和束丝藻(Aphanizomenonsp.),绿藻包括小球藻(Chlorellasp.)以及四尾栅藻(Scenedesmus quadricauda);基于实测的遥感反射率,经归一化处理后,分析了不同藻种的遥感反射率特征,构建了DI(difference index)指数以及ADI(algae distinguish index)指数,建立了藻种分类模型,利用验证集数据进行检验,整体识别精度达77.55%,Kappa系数为0.7178。将分类方法应用于太湖野外实测遥感反射率数据集中,结果与实测的生物量数据有较好的匹配;将模型应用于太湖OLCI(ocean and land colour instrument)影像数据,获得了2019年12月和2020...

关 键 词:太湖  遥感反射率  优势藻种  分类模型
收稿时间:2022/5/5 0:00:00
修稿时间:2022/6/15 0:00:00

Identification of dominant algae in Lake Taihu based on remote sensing reflectance
Zhu Yuxin,Li Yunmei,Zhang Yu,Wang Huaijing,Cai Xiaolan,Cheng Xin,Lv Heng.Identification of dominant algae in Lake Taihu based on remote sensing reflectance[J].Journal of Lake Science,2023,35(1):73-87.
Authors:Zhu Yuxin  Li Yunmei  Zhang Yu  Wang Huaijing  Cai Xiaolan  Cheng Xin  Lv Heng
Institution:Key Laboratory of Virtual Geographic Environment of Education Ministry, Nanjing Normal University, Nanjing 210023, P. R. China;Key Laboratory of Virtual Geographic Environment of Education Ministry, Nanjing Normal University, Nanjing 210023, P. R. China;Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, P. R. China
Abstract:Algal blooms occur frequently in the freshwater lakes and reservoirs in China, but the characteristics, hazards, and treatment methods of different bloom-forming algae species are significantly different, consequently, a critical scientific problem that must be solved is how to distinguish the reflectance characteristics of different algal species and identify dominant species in lakes using remote sensing reflectance. Based on laboratory algae culture experiments, the research produced typical cyanobacteria species (including Microcystis aeruginosa, Pseudanabaena sp. and Aphanizomenon sp.) and green algae species (including Chlorella sp. and Scenedesmus quadricauda), which are prevalent in eutrophic lakes. Subsequently, the normalized in-situ remote sensing reflectance characteristics of different algal species were analyzed, the DI (difference index) and ADI (algae distinguish index) were constructed based on spectral differences, and then the algal species identification model was established. Validated by independent verification data set, the overall recognition accuracy and Kappa coefficient were 77.55% and 0.7178, respectively. The results of classification algorithm match well with the measured biomass data when applied to the field measured remote sensing reflectance data set of Lake Taihu. Further model tests based on the OLCI images of Lake Taihu in December 2019 and August 2020 show that the proportion of cyanobacteria in Lake Taihu is higher than that of green algae in summer and winter, during which Microcystis displayed obvious advantages and a stronger dominant position in summer than in winter. Furthermore, in terms of seasonal and geographical distributions, the dominant areas of Microcystis were in the northern and southern bays of Lake Taihu in winter, while Pseudoanabaena was in the central area of the lake, and scattered with a tiny fraction of Aphanizomenon and Scenedesmus quadricauda at the same time; compared to summer, Microcystis was dominant in most areas of Lake Taihu, Pseudoanabaena was mainly distributed in the center and south of the lake, and the other three species only scattered in a small part of the lake. The development of a remote sensing identification model of the main algal species can provide technological assistances to remote sensing monitoring of the lake environment, as well as algal bloom prediction and prevention.
Keywords:Lake Taihu  remote sensing reflectance  dominant algae species  classification model
点击此处可从《湖泊科学》浏览原始摘要信息
点击此处可从《湖泊科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号