首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The formation of eucrites: Constraints from metal‐silicate partition coefficients
Authors:A Holzheid  H Palme
Abstract:Abstract— This study explores the controls of oxygen fugacity and temperature on the solubilities of Fe, Ni, Co, Mo, and W in natural eucritic liquids to better constrain the formation of eucritic melts. The solubilities of all five elements in molten silicate in equilibrium with FeNiCo‐, FeMo‐, and FeW‐ alloys increase with increasingly oxidizing conditions and decrease with decreasing temperatures. In applying these data to formation scenarios of the eucrite parent body, we find that the siderophile element abundances in eucrites (meteoritic basalts) cannot be explained by a single‐step partialmelting process from a chondritic, metal‐containing source. The Ni content of the partial melt is too high, and the W and Mo contents are too low compared to the abundances in eucritic meteorites. But Fe, Ni, and Co concentrations in eucrites can be modeled by metal‐silicate equilibrium during more or less complete melting of the eucrite parent body with subsequent fractional crystallization of olivine and orthopyroxene. However, the computed values of Mo are still too low and those of W too high when compared with Mo and W abundances in eucritic meteorites. One possibility is that the Mo and W partition coefficients strongly depend on pressure, although the howardite‐eucrite‐diogenite (HED) parent body only had a minimal pressure gradient (maximum interior pressure = 0.1 GPa). Alternatively, sulfides may have played some role in establishing Mo abundances.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号