首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quartz luminescence sensitivity from sediment versus bedrock in highly weathered soils of the Piedmont of North Carolina,south-eastern USA
Institution:1. Utah State University Luminescence Laboratory, 1770. North Research Parkway, Suite 123, North Logan, UT, 84341, USA;2. University of North Carolina-Charlotte, Department of Geography and Earth Sciences, 9201 University City Blvd., Charlotte, NC, 28223, USA;3. Utah State University, Department of Geosciences, 4505 Old Main Hill, Logan, UT, 84321, USA
Abstract:Deeply weathered soils cover most of the Piedmont physiographic province of the south-eastern United States of America (USA). These soils have traditionally been inferred to derive from weathered bedrock, but recent work (e.g. Ferguson et al., 2019) suggests that deposited sediments are more prevalent than recognized. Distinguishing sediment from weathered bedrock is integral to understanding critical-zone processes and overall Quaternary landscape evolution, yet the well-developed, red, clay-dominated Ultisols of this temperate and humid region mask differences between transported from non-transported material. Our goal is to determine if optically stimulated luminescence (OSL) methods can distinguish quartz sand from allochthonous (e.g. transported sediment) versus autochthonous (e.g. in situ weathered bedrock) material in soil-profile and core samples from the Redlair Observatory in southwestern North Carolina, USA. Here, we turn to OSL sensitivity and linear-modulated OSL (LM-OSL) to observe the intensity or lack thereof of the fast-decay luminescence component (most light-sensitive signal) in quartz grains from soil horizons and crystalline bedrock-derived saprolite. We find that quartz grains sampled from in situ weathered bedrock as well as from saprolotized clasts of rock have weak luminescence properties and are not dominated by a fast-decay luminescence component. In contrast, quartz grains from transported sediment (e.g. mobile regolith; colluvium; alluvium) contain sensitive grains with more dominant fast components. These results suggest that quartz luminescence sensitivity can be a tool to differentiate between in situ weathered bedrock and similar looking mobile regolith and colluvium over-printed by soil development.
Keywords:LM-OSL  Quartz sensitivity  Soil  Saprolite  Mobile regolith
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号