首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A composite geologic and seismic profile beneath the southern Rio Grande rift, New Mexico, based on xenolith mineralogy, temperature, and pressure
Authors:JM Hamblock  CL Andronicos  KC Miller  CG Barnes  M-H Ren  MG Averill  EY Anthony
Institution:aDepartment of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA;bDepartment of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA;cDepartment of Geosciences, Texas Tech University, Lubbock, TX 79409, USA
Abstract:A complete understanding of the processes of crustal growth and recycling in the earth remains elusive, in part because data on rock composition at depth is scarce. Seismic velocities can provide additional information about lithospheric composition and structure, however, the relationship between velocity and rock type is not unique. The diverse xenolith suite from the Potrillo volcanic field in the southern Rio Grande rift, together with velocity models derived from reflection and refraction data in the area, offers an opportunity to place constraints on the composition of the crust and upper mantle from the surface to depths of not, vert, similar 60 km. In this work, we calculate seismic velocities of crustal and mantle xenoliths using modal mineralogy, mineral compositions, pressure and temperature estimates, and elasticity data. The pressure, temperature, and velocity estimates from xenoliths are then combined with sonic logs and stratigraphy estimated from drill cores and surface geology to produce a geologic and velocity profile through the crust and upper mantle. Lower crustal xenoliths include garnet ± sillimanite granulite, two-pyroxene granulite, charnokite, and anorthosite. Metagabbro and amphibolite account for only a small fraction of the lower crustal xenoliths, suggesting that a basaltic underplate at the crust–mantle boundary is not present beneath the southern Rio Grande rift. Abundant mid-crustal felsic to mafic igneous xenoliths, however, suggest that plutonic rocks are common in the middle crust and were intraplated rather than underplated during the Cenozoic. Calculated velocities for garnet granulite are between not, vert, similar 6.9 and 8.0 km/s, depending on garnet content. Granulites are strongly foliated and lineated and should be seismically anisotropic. These results suggest that velocities > 7.0 km/s and a layered structure, which are often attributed to underplated mafic rocks, can also be characteristic of alternating garnet-rich and garnet-poor metasedimentary rocks. Because the lower crust appears to be composed largely of metasedimentary granulite, which requires deep burial of upper crustal materials, we suggest the initial construction of the continental crust beneath the Potrillo volcanic field occurred by thickening of supracrustal material in the absence of large scale magmatic accretion. Mantle xenoliths include spinel lherzolite and harzburgite, dunite, and clinopyroxenite. Calculated P-wave velocities for peridotites range from 7.75 km/s to 7.89 km/s, with an average of 7.82 km/s. This velocity is in good agreement with refraction and reflection studies that report Pn velocities of 7.6–7.8 km/s throughout most of the Rio Grande rift. These calculations suggest that the low Pn velocities compared to average uppermost mantle are the result of relatively high temperatures and low pressures due to thin crust, as well as a fertile, Fe-rich, bulk upper mantle composition. Partial melt or metasomatic hydration of the mantle lithosphere are not needed to produce the observed Pn velocities.
Keywords:Xenolith  Granulite  Lower crust  Siesmic velocity  Rift
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号