首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Soil temperatures in four metropolitan cities of Korea from 1960 to 2010: implications for climate change and urban heat
Authors:Jeong-Yong Cheon  Bong-Sik Ham  Jin-Yong Lee  Youngyun Park  Kang-Kun Lee
Institution:1. School of Earth and Environmental Sciences, Seoul National University, Seoul, 151-747, Republic of Korea
2. Department of Geology, College of Natural Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
Abstract:This study was conducted to reveal the trends of the air temperature and soil temperature for 51 years (1960–2010) and their relationship in four of Korea’s largest metropolitan cities (Seoul, Incheon, Busan and Daejeon). Also, the trends of the air and soil temperatures between the studied metropolitan cities and a rural area (Chupungryong) were compared to examine the effect of urban heat. Among the metropolitan cities, the long-term mean soil temperatures (depth 0.0, 0.5, 1.0, 1.5, 3.0, 5.0 m) were lowest (13.34–14.80 °C) in Seoul and highest (16.24–16.54 °C) in Busan, which is mainly the effect of the latitude. The soil temperature exponentially increased with depth in the three cities except for Busan and was closely related to the air temperature. The soil temperatures responded well to the air temperature change (maximum correlation coefficients 0.88–0.98) but this response was slightly delayed with depth. The air and soil temperatures increased at the rates of 0.24–0.40 and 0.11–0.73 °C/decade, respectively, for the period. The increasing rate of the soil temperature was the largest in Daejeon as 0.39–0.73 °C/decade, which was almost 2–4 times greater than those of the other cities (0.11–0.40 °C/decade), and it rose with depth. The increase of the soil temperature was coincident with the increase of the air temperature, which indicates that the soil temperature was largely affected by the increasing of the air temperature. In contrast, the increase in air temperature in Chupungryong (0.06 °C/decade) was significantly lower than in the metropolitan cities. In addition, the increase of the soil temperature in the rural area (0.13 °C/decade) was also much lower than that in the inland cities (0.20–0.27 °C/decade) while it showed no substantial difference from that in the coastal cities (0.11–0.15 °C/decade). Therefore, it is inferred that the soil temperature of the metropolitan cities increased with the increase of the air temperature due to global warming as well as the anthropogenic urban heat.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号