首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mercury-binding forms in coals and their geological provenances in coals of different types
Authors:Dun Wu  Guijian Liu  Ruoyu Sun  Shancheng Chen
Institution:1. CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
2. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi’an, 710075, Shaanxi, China
Abstract:Mercury (Hg) is an element of environmental and geological significance. Quantification of different Hg-binding forms is crucial to understand geological Hg provenances and associated geochemical processes during coal formation. In this study, seven coal samples were selected, according to coal rank (i.e., middle volatile bituminous, C-3; low volatile bituminous, C-2; anthracite, C-1), chemical anomalies (high S coal, IBC-105; high Cl coal, C22650) and sampling environment (fresh coal, LH; weathered coal LHW), to determine their Hg-binding forms using well-established sequential extraction procedures coupled with sink–float experiment. In the thermally metamorphosed samples C-1 and C-2, a comparative enrichment of total Hg relative to C-3 is observed. Silicate- and organic-bound Hg are the dominant Hg-binding forms in C-1, suggesting possible Hg sources from magma silicate and secondary Hg enrichment by adsorption. Sulfide- and organic-bound Hg are the most abundant Hg-binding forms in IBC-105, whereas only organic-bound Hg dominates in CC22650. Weathering processes are suggested to transform the abundant sulfide-bound Hg in LH to silicate- and organic-bound Hg in its weathering product LHW.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号