首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dating incipient metamorphism using 40Ar/39Ar geochronology and XRD modeling: a case study from the Swiss Alps
Authors:Michel Jaboyedoff  Michael A Cosca
Institution:(1) Institut de Minéralogie, Université de Lausanne, CH-1015 Lausanne, Switzerland E-mail: mcosca@imp.unil.ch, CH
Abstract:Six samples of a single carbonate-rich unit of the Swiss Préalpes, progressively metamorphosed from diagenesis to deep anchizone, yield 40Ar/39Ar spectra with variably developed staircase patterns, consistent with mixtures of detrital mica and neocrystallized mixed-layer illite/smectite. The lowest temperature heating steps for different size fractions (2–6?μm and 6–20?μm) converge to ~40?Ma providing an imprecise, maximum age of regional metamorphism. A method is described for distinguishing and quantifying the amount of pre-existing detrital mica versus neoformed illite layer in the illite/smectite formed during Tertiary Alpine metamorphism by comparison of X-ray diffraction patterns with Newmod© simulations. In the least metamorphosed samples the illite/smectite contains ~65% neoformed illite, and this illite accounts for approximately 17% of all dioctahedral phyllosilicate minerals in the rock (e.g., detrital mica and illite/smectite). In contrast, the illite/smectite from the more strongly metamorphosed samples contains >97% neoformed illite, which accounts for ~70% to >90% of all dioctahedral phyllosilicate minerals. Phyllosilicate morphologies viewed by scanning electron microscopy are consistent with these estimates. A process of dissolution/reprecipitation is inferred as a mechanism for the growth of the neoformed phyllosilicates. A plot of neoformed illite content versus 40Ar/39Ar total fusion age yields a near-linear curve with an extrapolated age of 27?Ma for 100% neoformed dioctahedral phyllosilicates. This age is interpreted as the time of incipient metamorphism and is consistent with independent biostratigraphic constraints. Model 40Ar/39Ar age spectra constructed with the XRD simulation results correspond well to the experimental data and illustrate the changes in degassing properties of progressively metamorphosed mixtures of detrital mica and neoformed illite.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号