首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multiple Isotopic Components in Quaternary Volcanic Rocks of the Cascade Arc near Crater Lake, Oregon
Authors:BACON  CHARLES R; GUNN  SUSAN H; LANPHERE  MARVIN A; WOODEN  JOSEPH L
Institution:US Geological Survey 345 Middlefield Road, Menlo Park, California 94025-3591
Abstract:Quaternary lavas and pyroclastic rocks of Mount Mazama, CraterLake caldera, and the surrounding area have variable Sr, Nd,and Pb isotopic compositions. High-alumina olivine tholeiites(HAOT) have 87Sr/86Sr ratios of 0.70346–0.70364; basalticandesite, 0–70349–0.70372; shoshonitic basalticandesite, 0.70374–0.70388; and andesite, 0.70324–0.70383.Dacites of Mount Mazama have 87Sr/86Sr ratios of 0.70348–0.70373.Most rhyodacites converge on 0.7037. However, rhyodacite ofthe caldera-forming, climactic eruption has 87Sr/86Sr=0.70354because of an admixed low-87Sr/86Sr component. Andesitic tomafic-cumulate scoriae of the climactic eruption, and enclavesin preclimactic rhyodacites, cluster in two groups but shownearly the entire 87Sr/86Sr range of the data set, confirmingpreviously suggested introduction of diverse parental magmasinto the growing climactic chamber. Pb and Nd isotope ratiosdisplay less variation (206Pb/204Pb= 18.838–18.967, 207Pb/204Pb=15.556–15.616,208Pb/204Pb=38.405–38.619; {varepsilon}Nd= +3.9 to +6.1) and generallycovary with 87Sr/86 Sr ratios. Radiogenic isotope data fromCrater Lake plot with published data for other Cascade volcanoeson isotope ratio correlation diagrams. The isotopic data for the Crater Lake area require sources ofprimitive magmas to consist of depleted mantle and a subductioncomponent, introduced in variable quantity to the depleted mantlewedge. Variable degrees of melting of this heterogeneous mantle,possibly at different depths, produced the diversity of isotopiccompositions and large-ion lithophile element (LILE) abundancesin primitive magmas. Trace element ratios do not indicate presenceof an ocean island basalt (OIB) source component that has beenreported in lavas of some other Cascade volcanoes. Crustal contamination may have affected isotope ratios and LILEconcentrations in evolved HAOT, where initial LILE concentrationswere low. Contamination is more difficult to detect in the calcalkalinelavas because of their higher LILE concentrations and the smallisotopic contrast with likely contaminants, such as mid- tolower-crustal rocks thought to be equivalents of igneous rocksof the Klamath Mountains and associated lower crust. Crustalassimilation appears to be required for calcalkaline rocks onlyby {delta}18O values, which vary from lows of +5.6 to + 6.0% in HAOTand primitive basaltic andesites to a high of +7.0% in dacite,a range that is too high to be explained by plagioclase-dominatedclosed-system fractional crystallization. Elevated {delta}18O valuesof differentiated lavas may be attributed to interaction withrelatively 18O-rich, 87Sr-poor crustal rocks. Variably fused granitoid blocks ejected in the climactic eruption,and rarely in late Pleistocene eruptive units, have {delta}18Opl of–3.4 to +6.5% and {delta}18Oqz of –2.2 to +8.0% but haveSr, Nd, and Pb isotope ratios similar to volcanic rocks (e.g.87Sr/86Sr{approx}0.7037). Rb and Sr data for glass separates from granodioritessuggest that the source pluton is Miocene. Glass from granodioritehas 87Sr/86Sr ratios as high as 0.70617. Oxygen isotope fractionationbetween quartz, plagioclase, and glass indicates requilibrationof O isotopes at magmatic temperatures, after 18O/16O had beenlowered by exchange with meteoric hydrothermal fluids. Unmeltedgranodiorite xenoliths from pre-climactic eruptive units have{delta}18O values that are consistent with onset of hydrothermal exchangeearly during growth of the climactic magma chamber. Assimilationof such upper-crustal granodiorite apparently lowered {delta}18O valuesof rhyodacites without significantly affecting their magmaticcompositions in other ways.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号