首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stress-dependent hydraulic properties of clayey-silt aquitards in eastern Australia
Authors:S Bouzalakos  R A Crane  D McGeeney  W A Timms
Institution:1.UNSW Connected Waters Initiative,National Centre for Groundwater Research and Training,Sydney,Australia;2.Australian Centre for Sustainable Mining Practices, School of Mining Engineering,The University of New South Wales,Sydney,Australia;3.Water Research Laboratory, School of Civil and Environmental Engineering,The University of New South Wales,Manly Vale,Australia
Abstract:Clayey-silt aquitards account for 60 % of the ~100-m-thick alluvial sediment sequence in the Gunnedah area of eastern Australia. To better understand the stress-dependent hydraulic properties of these low-permeability units, oedometer test data presented for the first time in this study have been integrated with geotechnical centrifuge permeameter tests. Estimates of vertical pre-consolidation effective stress (\(\sigma_{\text{p}}^{'}\)), vertical in situ effective stress (\(\sigma_{\text{i}}^{'}\)), and over-consolidation ratio (OCR) were used to determine whether centrifugation stresses caused compression of core samples, and the degree to which vertical hydraulic conductivity (K v) assessments were representative of the core samples tested. Results suggest that minimally disturbed drill core from semi-consolidated sediments (e.g., alluvial, colluvial, and eolian deposits) evaluated in this study should have target centrifugation stress less than \(\sigma_{\text{p}}^{'}, \) where OCR < 1 and \(\sigma_{\text{i}}^{'}\) where OCR > 1 to avoid significant changes in hydraulic properties during plastic straining. The results also imply that the stress-dependent response of aquitards is critical to understand the sensitivity of groundwater resources in areas with multiple stakeholders such as mining, coal seam gas, and agriculture developments. Groundwater in alluvial sediments that is essential for irrigation, water supply, and base flows to rivers must be sufficiently disconnected from groundwater in coal seams that are depressurized for extraction of energy resources.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号