首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of volcanic eruptions on the CO2 content of the atmosphere and the oceans: the 1996 eruption and flood within the Vatnajökull Glacier, Iceland
Authors:S R Gí  slason     Snorrason  H K Kristmannsd  ttir     E Sveinbj  rnsd  ttir  P Torsander  J   lafsson  S Castet and B Dupr
Institution:

a Science Institute, University of Iceland, Dunhagi 3, 107, Reykjavík IS, Iceland

b National Energy Authority, Grensásvegi 9, 108, Reykjavík, Iceland

c Department of Geology and Geochemistry, Stockholm University, S-106 91, Stockholm, Sweden

d Marine Institute, Skúlagötu 4, 101, Reykjavík, Iceland

e Laboratoire de Géochimie, CNRS, University of Paul-Sabatier, 31400, Toulouse, France

Abstract:The October 1996 eruption within the Vatnajökull Glacier, Iceland, provides a unique opportunity to study the net effect of volcanic eruptions on atmospheric and oceanic CO2. Volatile elements dissolved in the meltwater that enclosed the eruption site were eventually discharged into the ocean in a dramatic flood 35 days after the beginning of the eruption, enabling measurement of 50 dissolved element fluxes. The minimum concentration of exsolved CO2 in the 1×1012 kg of erupted magma was 516 mg/kg, S was 98 mg/kg, Cl was 14 mg/kg, and F was 2 mg/kg. The pH of the meltwater at the eruption site ranged from about 3 to 8. Volatile and dissolved element release to the meltwater in less than 35 days amounted to more than one million tonnes, equal to 0.1% of the mass of erupted magma. The total dissolved solid concentration in the floodwater was close to 500 mg/kg, pH ranged from 6.88 to 7.95, and suspended solid concentration ranged from 1% to 10%. According to H, O, C and S isotopes, most of the water was meteoric whereas the C and S were of magmatic origin. Both C and S went through isotopic fractionation due to precipitation at the eruption site, creating “short cuts” in their global cycles. The dissolved fluxes of C, Ca, Na, Si, S and Mg were greatest ranging from 1.4×1010 to 1.4×109 mol. The dissolved C flux equaled 0.6 million tonnes of CO2. The heavy metals Ni, Mn, Cu, Pb and Zn were relatively mobile during condensation and water–rock interactions at the eruption site. About half of the measured total carbon flood flux from the 1996 Vatnajökull eruption will be added to the long-term CO2 budget of the oceans and the atmosphere. The other half will eventually precipitate with the Ca and Mg released. Thus, for eruptions on the ocean floor, one can expect a net long-term C release to the ocean of less than half that of the exsolved gas. This is a considerably higher net C release than suggested for the oceanic crust by Staudigel et al. Geochim. Cosmochim. Acta, 53 (1989) 3091]. In fact, they suggested a net loss of C. Therefore, magma degassed at the ocean floor contributes more C to the oceans and the atmosphere than magma degassed deep in the oceanic crust. The results of this study show that subglacial eruptions affecting the surface layer of the ocean where either Mn, Fe, Si or Cu are rate-determining for the growth of oceanic biomass have a potential for a transient net CO2 removal from the ocean and the atmosphere. For eruptions at high latitudes, timing is crucial for the effect of oceanic biota. Eruptions occurring in the wintertime when light is rate-determining for the growth of biota have much less potential for bringing about a transient net negative CO2 flux from the ocean atmosphere reservoir.
Keywords:Volcanic eruptions  Atmospheric CO2  Oceanic CO2  Magmatic CO2  Volatile elements  Fluxes of dissolved elements  Relative mobility  Flood  Vatnajökull Glacier
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号