首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Retrievals of atmospheric variables on the gas giants from ground-based mid-infrared imaging
Authors:LN Fletcher  GS Orton  BM Fisher  PGJ Irwin
Institution:a MS 169-237, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
b School of GeoScience, University of Edinburgh, Crew Building, King's Buildings, Edinburgh, EH9 3JN, UK
c Atmospheric, Oceanic & Planetary Physics, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
Abstract:Thermal-infrared imaging of Jupiter and Saturn using the NASA/IRTF and Subaru observatories are quantitatively analyzed to assess the capabilities for reproducing and extending the zonal mean atmospheric results of the Cassini/CIRS experiment. We describe the development of a robust, systematic and reproducible approach to the acquisition and reduction of planetary images in the mid-infrared (7-25 μm), and perform an adaptation and validation of the optimal estimation, correlated-k retrieval algorithm described by Irwin et al. Irwin, P., Teanby, N., de Kok, R., Fletcher, L., Howett, C., Tsang, C., Wilson, C., Calcutt, S., Nixon, C., Parrish, P., 2008. J. Quant. Spectrosc. Radiat. Trans. 109 (6), 1136-1150] for channel-integrated radiances. Synthetic spectral analyses and a comparison to Cassini results are used to verify our abilities to retrieve temperatures, haze opacities and gaseous abundances from filtered imaging. We find that ground-based imaging with a sufficiently high spatial resolution is able to reproduce the three-dimensional temperature and para-H2 fields measured by spacecraft visiting Jupiter and Saturn, allowing us to investigate vertical wind shear, pressure and, with measured cloud-top winds, Ertel potential vorticity on potential temperature surfaces. Furthermore, by scaling vertical profiles of NH3, PH3, haze opacity and hydrocarbons as free parameters during thermal retrievals, we can produce meridional results comparable with CIRS spectroscopic investigations. This paper demonstrates that mid-IR imaging instruments operating at ground-based observatories have access to several dynamical and chemical diagnostics of the atmospheric state of the gas giants, offering the prospect for quantitative studies over much longer baselines and often covering much wider areas than is possible from spaceborne platforms.
Keywords:Jupiter  Saturn  Atmospheres  composition  Atmospheres  structure  Infrared observations  Atmospheres  dynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号