首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Two dynamical classes of Centaurs
Authors:Brenae L Bailey
Institution:a Program in Applied Mathematics, 617 N. Santa Rita, The University of Arizona, Tucson, AZ 85721, USA
b Lunar and Planetary Laboratory, 1629 E. University Blvd., The University of Arizona, Tucson, AZ 85721, USA
Abstract:The Centaurs are a transient population of small bodies in the outer Solar System whose orbits are strongly chaotic. These objects typically suffer significant changes of orbital parameters on timescales of a few thousand years, and their orbital evolution exhibits two types of behaviors described qualitatively as random walk and resonance-sticking. We have analyzed the chaotic behavior of the known Centaurs. Our analysis has revealed that the two types of chaotic evolution are quantitatively distinguishable: (1) the random walk type behavior is well described by so-called generalized diffusion in which the rms deviation of the semimajor axis grows with time t as ∼tH, with Hurst exponent H in the range 0.22-0.95, however (2) orbital evolution dominated by intermittent resonance sticking, with sudden jumps from one mean motion resonance to another, has poorly defined H. We further find that these two types of behavior are correlated with Centaur dynamical lifetime: most Centaurs whose dynamical lifetime is less than 22 Myr exhibit generalized diffusion, whereas most Centaurs of longer dynamical lifetimes exhibit intermittent resonance sticking. We also find that Centaurs in the diffusing class are likely to evolve into Jupiter-family comets during their dynamical lifetimes, while those in the resonance-hopping class do not.
Keywords:Centaurs  Comets  Dynamics  Comets  Origin
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号