首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Absence of extraterrestrial He in Permian-Triassic age sedimentary rocks
Authors:KA Farley  P Ward  S Mukhopadhyay
Institution:a Division of Geological and Planetary Sciences, MS 170-25, California Institute of Technology, Pasadena, CA 91125, USA
b Department of Earth and Space Sciences University of Washington, 63 Johnson Hall, Box 351310, Seattle, WA 98195, USA
c Department of Earth and Planetary Sciences, Harvard University Cambridge, MA 02138, USA
Abstract:Helium concentration and isotopic composition were measured in a suite of samples across the Permian-Triassic boundary at Opal Creek, Canada, to determine whether high extraterrestrial helium concentrations are associated with a possible extinction-inducing impact event at this time. No extraterrestrial 3He was detected, implying that neither fullerene-hosted nor IDP-hosted He is present at or near the boundary. This observation is consistent with similar studies of some Permian-Triassic sections, but contrasts sharply with reports of both fullerene- and IDP-hosted extraterrestrial 3He at other sections.Step-heat experiments indicate rapid diffusion of extraterrestrial helium from sediments heated to temperatures above ∼ 70 °C. Given the likelihood of burial and associated heating in Permian-Triassic age rocks, the initially unexpected absence of IDP-hosted 3He likely indicates thermally induced diffusive loss. Indeed one of the key sections (Graphite Peak, Antarctica) from which extraterrestrial 3He has been reported at and near the Permian-Triassic boundary has been sufficiently heated that the reported preservation of extraterrestrial helium, in both IDPs and fullerenes, is inexplicable. Recent contamination provides a plausible explanation for extraterrestrial 3He in these samples.While no extraterrestrial 3He was detected at Opal Creek, there is a sharp increase in nucleogenic 3He very close to or at the Permian-Triassic boundary. This presumably arises from the major lithologic change at this time, from cherts in the Permian to shales and siltstones in the Triassic. Increased nucleogenic 3He is associated with increases in both lithium and organic carbon content into the Triassic. Either the production rate or the retention of this 3He is higher in the shales and siltstones than in the cherts. Care must be taken to eliminate such artifacts before interpreting changes in 3He concentration in terms of fluctuations in the delivery of 3He from space.
Keywords:extraterrestrial helium  cosmic dust  Permian-Triassic boundary  fullerene
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号