首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Silicate liquid immiscibility in impact melts
Authors:Christopher Hamann  Agnese Fazio  Matthias Ebert  Lutz Hecht  Richard Wirth  Luigi Folco  Alex Deutsch  Wolf Uwe Reimold
Institution:1. Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany;2. Institut für Geowissenschaften, Friedrich-Schiller-Universität Jena, Carl-Zeiss-Promenade 10, 07745 Jena, Germany;3. Institut für Geo- und Umweltnaturwissenschaften, Albert-Ludwigs-Universität Freiburg, Albertstraße 23b, 79104 Freiburg im Breisgau, Germany;4. Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany

Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstraße 74–100, 12249 Berlin, Germany;5. Helmholtz-Zentrum Potsdam—Deutsches GeoForschungsZentrum GFZ, Sektion 3.3, Telegrafenberg, 14473 Potsdam, Germany;6. Dipartimento di Science della Terra, Università di Pisa, Via Santa Maria 35, 56123 Pisa, Italy;7. Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany;8. Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, 10115 Berlin, Germany

Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany

Laboratório de Geocronologia, Instituto de Geociências, Universidade de Brasília, Brazil

Abstract:We have investigated silicate emulsions in impact glasses and impact melt rocks from the Wabar (Saudi Arabia), Kamil (Egypt), Barringer (USA), and Tenoumer (Mauritania) impact structures, and in experimentally generated impact glasses and laser-generated glasses (MEMIN research unit) by scanning electron microscopy, electron microprobe analysis, and transmission electron microscopy. Textural evidence of silicate liquid immiscibility includes droplets of one glass disseminated in a chemically distinct glassy matrix; sharp phase boundaries (menisci) between the two glasses; deformation and coalescence of droplets; and occurrence of secondary, nanometer-sized quench droplets in Si-rich glasses. The compositions of the conjugate immiscible liquids (Si-rich and Fe-rich) are consistent with phase separation in two-liquid fields in the general system Fe2SiO4–KAlSi3O8–SiO2–CaO–MgO–TiO2–P2O5. Major-element partition coefficients are well correlated with the degree of polymerization (NBO/T) of the Si-rich melt: Fe, Ca, Mg, and Ti are concentrated in the poorly polymerized, Fe-rich melt, whereas K, Na, and Si prefer the highly polymerized, Si-rich melt. Partitioning of Al is less pronounced and depends on bulk melt composition. Thus, major element partitioning between the conjugate liquids closely follows trends known from tholeiitic basalts, lunar basalts, and experimental analogs. The characteristics of impact melt inhomogeneity produced by melt unmixing in a miscibility gap are then compared to impact melt inhomogeneity caused by incomplete homogenization of different (miscible or immiscible) impact melts that result from shock melting of different target lithologies from the crater's melt zone, which do not fully homogenize and equilibrate due to rapid quenching. By taking previous reports on silicate emulsions in impact glasses into account, it follows that silicate impact melts of variable composition, cooling rate, and crystallization history might readily unmix during cooling, thereby rendering silicate liquid immiscibility a much more common process in the evolution of impact melts than previously recognized.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号