首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Initial Al/Al in carbonaceous-chondrite chondrules: too little Al to melt asteroids
Authors:Takuya Kunihiro  Alan E Rubin  John T Wasson
Institution:1 Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California 90095, USA
2 Department of Earth and Space Sciences, University of California, Los Angeles, California 90095, USA
Abstract:We report 26Mg excesses correlated with Al/Mg ratios in five chondrules from the primitive CO3.0 chondrite Yamato 81020 that yield a mean initial 26Al/27Al ratio of only (3.8 ± 0.7) × 10−6, about half that of ordinary chondrite (OC) chondrules. Even if asteroids formed immediately after chondrule formation, this ratio and the mean Al content of CO chondrites is only capable of raising the temperature of a well-insulated CO asteroid to 940 K, which is more than 560 K too low to produce differentiation. The same ratio combined with the higher Al content of CV chondrites results in a CV asteroid temperature of 1100 K. We calculate that the mean initial 26Al/27Al ratio of about 7.4 × 10−6 found in LL chondrules is only able to produce small amounts of melting, too little to produce differentiation. These results cast serious doubt on the viability of 26Al as the heat source responsible for asteroid differentiation. Inclusion of 60Fe raises temperatures about 160 K, but this increment is not enough to cause differentiation, even of an LL-chondrite asteroid.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号