首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Trace element incorporation into quartz: A combined study by ICP-MS, electron spin resonance, cathodoluminescence, capillary ion analysis, and gas chromatography
Authors:Jens Götze  Michael Plötze  Dieter Klaus Hallbauer
Institution:1 TU Bergakademie Freiberg, Department of Mineralogy, Brennhausgasse 14, D-09596 Freiberg, Germany
2 ETH Zürich, IGT ClayLab, CH-8093 Zürich, Switzerland
3 Universität Würzburg, Department of Mineralogy, Am Hubland, D-97074 Würzburg, Germany
4 University of Stellenbosch, Department of Geology, Private Bag X1, Matieland 7602, Republic of South Africa
5 University of Toronto, Department of Geology, 22 Russell Street, Toronto, Ontario, M5S 3B1, Canada
Abstract:Pegmatite quartz from different occurrences in Norway and Namibia was investigated by a combination of ICP-MS, Electron Spin Resonance (ESR), Capillary Ion Analysis (CIA) and Gas Chromatography (GC) to quantify trace elements in very low concentrations and to determine their position in the quartz structure.The studied quartz samples show similar geochemical characteristics with low contents of most trace elements. Remarkable are the elevated concentrations of Al (36-636 ppm), Ti (1.6-25.2 ppm), Ge (1.0-7.1 ppm), Na (5.2 to >50 ppm), K (1.6 to >100 ppm) and Li (2.1-165.6 ppm). These elements are preferentially incorporated into the quartz lattice on substitutional (Al, Ti, Ge) and interstitial (Li, Na, K) positions. Li+ was found to be the main charge compensating ion for Al, Ge and Ti, whereas some ppm of Na and K may also be hosted by fluid inclusions. Ti may be incorporated as substitutional ion for Si or bound on mineral microinclusions (rutile). The results of the ESR measurements show that there may be a redistribution of alkali ions during irradiation. The diamagnetic AlO4/M+]0 center transforms into the paramagnetic AlO4]0 center, whilst the compensating ions diffuse away and may be captured by the diamagnetic precursor centers of GeO4]0 and TiO4]0 to form paramagnetic centers (TiO4/Li+]0, GeO4/Li+]0).In general, fluid inclusions in pegmatite quartz can be classified as H2O-CO2-NaCl type inclusions with water as the predominant volatile. Among the main elements hosted by fluid inclusions in quartz are Na, K, NH4, Ca, Mg and the anionic complexes Cl, NO3, HCO3 and SO42−. Gas analysis of trapped fluids shows volatile components in the following order of abundance: H2O > CO2 > N2(+) ≥ CH4 > COS > C2 and C3 hydrocarbons. Additionally, traces of Co, Ni, Zn, Pb, and Cu were detected by CIA in fluid inclusions of some samples. There are indications that the REE and Rb are also bound in fluid inclusions, however, the concentrations of these elements are too low to be measured by CIA. Assuming that the REE preferentially occur in fluid inclusions, the typical chondrite normalized REE distribution patterns with tetrad effects and a distinct negative Eu anomaly would reflect the composition of the mineralizing fluid.For a number of elements, especially those with extremely low concentrations, the “type” of incorporation in quartz could not directly be determined. We conclude that these ions either are too large to substitute for the small Si4+ ion or they are not soluble in the mineralizing fluids to be hosted by fluid inclusions. Some of these elements, which are concentrated in the specific mineralization of certain pegmatites, are not present in elevated concentrations in the paragenetic pegmatite quartz itself. This was observed, for instance, for Be, Cs and Rb in the Li (Be-Cs-Rb) pegmatites of Rubicon or for Nb and Ta for Nb-Ta bearing pegmatites from Norway. It may be concluded that the concentrations of these trace elements in quartz do not reflect the mineralization and that these elements thus, cannot be used as petrogenetic indicator.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号