首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bond-valence methods for pKa prediction: critical reanalysis and a new approach
Authors:Barry R Bickmore  Christopher J Tadanier  Will D Monn
Institution:1 Department of Geology, Brigham Young University, Provo, UT 84602-4606, USA
2 Department of Geological Sciences and Charles E. Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA
3 Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, MSIN K8-96, Richland, WA 99352, USA
4 Center for Statistical Consultation and Collaborative Research, Department of Statistics, Brigham Young University, Provo, UT 84602, USA
Abstract:Bond-valence methods for the prediction of (hydr)oxide solution monomer and surface functional group acidity constants are examined in light of molecular structures calculated using ab initio methods. A new method is presented that is based on these calculated structures, and it is shown that previously published methods have neglected one or more of four essential features of a generalized model. First, if the apparent pKa values of solution monomers are to be used to predict intrinsic pKa values of surface functional groups, similar electrostatic corrections must be applied in both cases. In surface complexation models, electrostatic corrections are applied by representing a charged surface as a uniform plane of charge density, and an analogous correction can be made to solution monomers by treating them as charged spheres. Second, it must be remembered that real surfaces and real monomers are not homogeneous planes or spheres. Rather, charge density is distributed rather unevenly, and a further electrostatic correction (which is often quite large) must be made to account for the proximity of electron density to the point of proton attachment. Third, the unsaturated valence of oxygen atoms in oxyacids, hexaquo cations, and oxide surfaces is strongly correlated with acidity after electrostatic corrections are made. However, calculation of unsaturated valence for oxyacids and oxide surfaces must be based on realistic MeO bond lengths (taking into account bond relaxation), which can be obtained from ab initio structure optimizations. Finally, unsaturated valence must be divided between possible bonds (four for oxygen atoms) to reflect the fact that O-H bonds are localized to particular regions of the O atoms.Empirical models that take all these factors into account are presented for oxyacids and hexaquo cations. These models are applied to the gibbsite (100), (010), (001), and cristobalite (100) surfaces, and it is demonstrated that the model for oxyacids predicts reasonable intrinsic pKa values for oxide surfaces. However, the prediction of surface pKa values is complex, because the protonation state of one functional group affects the pKa values of neighboring groups. Therefore, calculations of larger periodic systems, progressively protonated and reoptimized, are needed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号