首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Introduction
Authors:H Craig
Institution:Isotope Laboratory, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093 U.S.A.
Abstract:We have recently measured the concentrations of W and Mo in a large number of terrestrial samples using a new neutron activation analysis method and from these data we have estimated the abundance of these elements in the mantle. The new Mo mantle abundance of 59 ppb is much lower, the W mantle abundance of 10 ppb is somewhat lower than previous estimates. The concentrations of W in some ocean floor basalts are much lower than previously reported. The good correlation of W with U confirms the highly incompatible behavior of W and the good correlation of Mo with Nd indicates a moderately incompatible nature for Mo.The new data on W and Mo provide important constraints regarding the possible mechanisms of core formation and accretion because W and Mo are refractory elements under reducing conditions which would have accreted in the Earth in chondritic proportions, unaffected by volatility. The Mo/W ratio of 5.9 in the mantle is less than a factor of two lower than the chondritic ratio of 9.8. The ratio of Mo to W is a sensitive indicator for metal or sulfide fractionation, because Mo is more siderophile and more chalcophile than W. This tightly limits the amount of metal or sulfide segregation from the mantle to less than 0.1% since the end of accretion. The data for the moderately siderophile elements Mo, W, Co and Ni suggest that core formation in the Earth was essentially complete after 85–95% of the Earth had accreted.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号