首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mineralogy of granulated wood ash from a heating plant in Kalmar, Sweden
Authors:Sirkku L Holmberg  Tommy Claesson
Institution:Department of Biology and Environmental Science, University of Kalmar, Sweden,
Abstract:The central heating plant of Kalmar, Sweden produces 200-300 tons wood ash every year. A stabilised material for nutrient recycling is produced by adding water and dolomite to the wood ash and granulating the mixture. Combined mineralogy and chemistry can be used to interpret the transformation processes that occur during hardening and weathering of the granules, thus leading to a possibility to refine the production process and final characteristics of the granules. Mineralogy was separately studied in the wood ash, dolomite, self-hardened wood ash and granules by X-ray diffraction. Magnesium- and calcium-containing minerals are most common in the ash materials in the present study. The amounts of portlandite and calcite present in self-hardened and granulated ash samples are clearly higher than those in the untreated ash, showing that these minerals are formed during the treatments. Additionally, one potassium-containing secondary mineral, syngenite, is formed during the self-hardening of wood ash. Quartz, dolomite and the Fe-K-Mg-silicate in the granules originate from dolomite. The secondary minerals gypsum and calcium silicate hydrate are present in the granules. Portlandite occurs only in control granules in the field study. This suggests that hardening of granules continues in the field and portlandite is transformed into calcite. After up to 3 years on forest soil, the crystalline compounds dolomite, calcite, quartz, ankerite, albite and alumohydrocalcite are present in granules, of which alumohydrocalcite is formed as a secondary mineral in the field. These results suggest that the dissolution of granulated wood ash is strongly delayed compared with untreated wood ash and self-hardened wood ash because of the formation of less soluble compounds during the granulation process.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号