首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Calculated phase equilibria for low- and medium-pressure metapelites in the KFMASH and KMnFMASH systems
Authors:C J Wei  R Powell  G L Clarke
Institution:School of Earth and Space Sciences, Peking University, Beijing 100871, China (); School of Earth Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia; School of Geosciences, University of Sydney, Sydney, NSW 2006, Australia
Abstract:Petrogenetic grids in the KFMASH and KMnFMASH model systems calculated with the software thermocalc 3.1 are presented for the P–T range 0.5–12 kbar and 450–900 °C, for assemblages involving garnet, muscovite, chloritoid, biotite, chlorite, staurolite, cordierite, spinel, orthopyroxene, K‐feldspar, Al2SiO5 phases, quartz, water and melt. Based on calculated compatibility diagrams and P–T and T–MMn Mn/(Mg + Fe + Mn)] pseudosections for different metapelitic bulk compositions, the principal conclusions are that the addition of Mn to the KFMASH system: (i) enhances the stability of garnet, and, to a lesser extent, aluminosilicates; (ii) reduces the stability of staurolite, cordierite and, to a lesser extent, chlorite; and (iii) extends the medium pressure stability of muscovite and the low‐P stability field of K‐feldspar. The influence of Mn on individual mineral stabilities is strongly related to rock composition, in particular, to the relative contents of Al2O3 and K2O. For metapelites of a range of compositions and MMn values, P–T pseudosections in the KFMASH system, in most cases, do not adequately predict the mineral assemblages observed in natural assemblages under medium and low‐pressure conditions. In contrast, the P–T pseudosections in the KMnFMASH system generally provide more satisfactory results, suggesting that MnO is one of the non‐KFMASH components that should not be neglected in documenting the phase equilibria of medium‐ and low‐P metapelites.
Keywords:KFMASH and KMnFMASH systems  phase equilibria              thermocalc
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号