首页 | 本学科首页   官方微博 | 高级检索  
     检索      

泥质砂岩黏土附加导电强度评价指数定义及应用方法
引用本文:韩学辉,郭俊鑫,毛新军,刘红林,张浩,房涛,陈芸娟,江佳洋,李昊,李靖,王鹏.泥质砂岩黏土附加导电强度评价指数定义及应用方法[J].地球物理学报,2019,62(11):4462-4471.
作者姓名:韩学辉  郭俊鑫  毛新军  刘红林  张浩  房涛  陈芸娟  江佳洋  李昊  李靖  王鹏
作者单位:1. 中国石油大学(华东)地球科学与技术学院, 青岛 266580;2. 南方科技大学, 深圳 518055;3. 中国石油股份有限公司新疆油田公司勘探事业部, 克拉玛依 834000;4. 新疆油田公司采油二厂, 克拉玛依 834000;5. 中国石油集团测井有限公司新疆分公司, 克拉玛依 834000
基金项目:国家自然基金(U1562108)、国家科技重大专项(2017ZX05009001)和"十三五"专项(2016ZX05011)联合资助.
摘    要:针对泥质砂岩黏土附加导电还没有综合定量评价指标的现状,从Archie公式和Waxman-Smits方程计算的含水饱和度的相对误差出发定义了黏土附加导电强度指数η,并考察了地层水电导率Cw、阳离子交换容量Qv、含水饱和度Sw、饱和度指数nη的影响,给出了黏土附加导电强度判别方法和图版,通过低阻油气层的工程应用实例探讨了η在饱和度方程选取中的应用.结果表明,ηCwSwn值的增大而以近似乘幂规律减小,随Qv的增大而近似线性增大;CwQvη的影响最大,nSw次之;无法由单一因素判断黏土附加导电性强弱,必须综合考虑QvCwSwn的影响;对于低阻油气层,可利用该指数按照"三步法"及判别图版定量判断低阻成因并为饱和度模型的选取提供技术依据.

关 键 词:低阻  黏土附加导电  判别图版  饱和度方程  
收稿时间:2019-07-04

Definition of clay additional conductivity intensity index for argillaceous sandstone and its application
HAN XueHui,GUO JunXin,MAO XinJun,LIU HongLin,ZHANG Hao,FANG Tao,CHEN YunJuan,JIANG JiaYang,LI Hao,LI Jing,WANG Peng.Definition of clay additional conductivity intensity index for argillaceous sandstone and its application[J].Chinese Journal of Geophysics,2019,62(11):4462-4471.
Authors:HAN XueHui  GUO JunXin  MAO XinJun  LIU HongLin  ZHANG Hao  FANG Tao  CHEN YunJuan  JIANG JiaYang  LI Hao  LI Jing  WANG Peng
Institution:1. School of Geoscience, China University of Petroleum(East China), Qingdao 266580, China;2. Department of Earth and Space Sciences, Southern University of Science and Technology, Shenzhen 518055, China;3. Exploration Department of Xinjiang Oilfield Company, PetroChina, Karamy 834000, China;4. The Second Oil Production Plant, Xinjiang Oilfield Company, PetroChina, Kalamay 834000, China;5. Xinjiang Branch of China Petroleum Logging Company Limited, Kalamay 834000, China
Abstract:Up to now no comprehensive index has been proposed to quantify the clay additional conductivity for argillaceous sandstone. To fill this gap, this paper defines a clay additional conductivity intensity index η based on the relative error between the results calculated by Archie formula and those by Waxman-Smits equation. Then, the influences of the formation water conductivity Cw, cation exchange capacity Qv, water saturation Sw, and the saturation index n on this parameter are examined. The method to quantify the clay additional conductivity and the corresponding discrimination template are given. Furthermore, the application of η in the selection of saturation equations is also discussed through a case study to low-resistivity reservoirs. The results show that η decreases exponentially with Cw, Sw and n, whereas it increases nearly linearly with Qv. Cw and Qv have the largest influence on η, while the influences of n and Sw are smaller. It is difficult to determine the clay additional conductivity from only one factor and hence the influence of Qv, Cw, Sw and n should be considered comprehensively. For low-resistivity reservoirs, ‘three-step approach’ and the discrimination template can be used to determine the reason for low resistivity, which provides a basis for selection of the saturation model.
Keywords:Low resistivity  Clay additional conductivity  Discrimination template  Saturation equation  
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号