首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于数字岩心动态应力应变模拟的非均匀孔隙介质波致流固相对运动刻画
引用本文:朱伟,赵峦啸,王晨晨,单蕊.基于数字岩心动态应力应变模拟的非均匀孔隙介质波致流固相对运动刻画[J].地球物理学报,2020,63(6):2386-2399.
作者姓名:朱伟  赵峦啸  王晨晨  单蕊
作者单位:1. 长江大学地球物理与石油资源学院, 武汉 430100;2. 同济大学海洋地质国家重点实验室, 上海 200092;3. 同济大学海洋与地球科学学院, 上海 200092;4. 长江大学非常规油气湖北省协同创新中心, 武汉 430100;5. 中煤科工集团西安研究院有限公司, 西安 710077
基金项目:国家自然科学基金项目(41704117,41874124)资助.
摘    要:地震波传播激发的不同尺度的流固相对运动(宏观、中观和微观)是许多沉积岩地层中地震波频散和衰减的主要原因,然而野外观测和试验测量都难以对非均匀多孔介质孔隙压力弛豫物理过程进行精细刻画.通过数字岩石物理技术,本文建立了三个典型的数字岩心分别用于表征孔隙结构、岩石骨架和斑状饱和流体引起的非均质性,利用动态应力应变模拟技术计算数字岩心的位移和孔隙流体增量图像.通过分析和比较三个数字岩心的位移和孔隙压力增量图像,细致刻画了发生于非均匀含流体多孔介质内的宏观、中观和微观尺度的流固相对运动:1)宏观尺度的波致孔隙流体流动导致波长尺度上数字岩心不同区域的孔隙压力和位移差异;2)中观尺度的流体流动发生在软层与硬层之间、气层与液层之间;3)微观尺度的流体流动发生在孔隙内部或相邻孔隙之间.数值模拟试验也证明基于数字岩心的动态应力应变模拟技术可以从微观尺度上更好的理解波致孔隙流体流动发生的物理机理,从而为建立岩石骨架、孔隙流体、孔隙结构非均质性和弹性波频散-衰减特征的映射关系奠定基础.

关 键 词:数字岩心  动态应力应变模拟  波致孔隙流体流动  非均匀性  
收稿时间:2019-03-01

Characterization of wave-induced pore fluid flow based on dynamic stress strain simulation on digital rocks
ZHU Wei,ZHAO LuanXiao,WANG ChenChen,SHAN Rui.Characterization of wave-induced pore fluid flow based on dynamic stress strain simulation on digital rocks[J].Chinese Journal of Geophysics,2020,63(6):2386-2399.
Authors:ZHU Wei  ZHAO LuanXiao  WANG ChenChen  SHAN Rui
Institution:1. College of Geophysics and Petroleum Resources, Yangtze University, Wuhan 430100, China;2. State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China;3. School of Ocean and Earth Science, Tongji University, Shanghai 200092, China;4. Hubei Cooperative Innovation Center of Unconventional Oil and Gas, Yangtze University, Wuhan 430100, China;5. Xi'an Research Institute, CCTEG, Xi'an 710077, China
Abstract:The wave-induced relative fluid-solid motion at different scales (macroscopic, mesoscopic and microscopic) is the main cause for wave dispersion and attenuation in many sedimentary rocks. Nevertheless, the detailed fluid pressure diffusion process in heterogeneous porous rocks is difficult to be observed and characterized by laboratory and filed measurements. To tackle this problem, on the basis of digital rock physics technique, three typical digital rocks are constructed to represent the heterogeneity caused by pore structure, rock skeleton and patchy saturation, respectively. Then dynamic stress-strain simulation is applied to calculate the displacement and pore pressure increment images of the digital rocks. By analyzing and comparing these images, details concerning the relative fluid-solid motion at macro-, meso- and micro-scale in fluid saturated heterogeneous porous media are described as follows. 1) Macroscopic flow yields pore pressure and displacement difference between different parts of digital rocks at wavelength scale. 2) Mesoscale flow mainly occurs between soft and stiff layers as well as gas and liquid saturated zones. 3) Microscopic fluid flow mainly takes place within or between adjacent pores. Numerical simulation also demonstrates that the dynamic stress-strain simulation based on digital rock can be used to effectively characterize the physics of wave-induced fluid flow at different scales, thus laying a foundation for establishing a link between the heterogeneities of rock skeleton, pore fluid, pore structure and wave dispersion and attenuation signatures.
Keywords:Digital rock  Dynamic stress strain simulation  Wave-induced fluid flow  Heterogeneity  
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号