首页 | 本学科首页   官方微博 | 高级检索  
     检索      

北太平洋上空臭氧总量长期变化趋势及其影响因素分析
引用本文:韩爽爽,黄富祥,陈希,夏学齐.北太平洋上空臭氧总量长期变化趋势及其影响因素分析[J].地球物理学报,2016,59(11):3974-3984.
作者姓名:韩爽爽  黄富祥  陈希  夏学齐
作者单位:1. 中国地质大学(北京)地球科学与资源学院, 北京 100083; 2. 国家卫星气象中心, 北京 100081
基金项目:国家自然科学基金项目(41275035),公益性行业(气象)科研专项(GYHY201206015)资助.
摘    要:本文基于1979—2014年臭氧总量的卫星遥感数据,利用多元线性回归模型对臭氧总量数据序列进行模拟计算,考察了北太平洋上空臭氧总量长期变化趋势及其影响因素的作用.结果表明,北太平洋地区大气臭氧总量长期变化呈现减少趋势,但是减少速率随季节和纬度带表现出差异性,在各纬度带臭氧峰值季节臭氧下降趋势最为显著.在0°—15°N地区臭氧高值出现在夏秋季节并在8月达到峰值,峰值月份臭氧年均下降率约为0.2DU/a;15°—30°N亚热带地区臭氧高值出现在春夏季并在5月达到峰值,峰值月份臭氧年均下降速率约为0.22DU/a;而在30°—45°N中纬度地区臭氧高值出现在冬春季并在2月达到峰值,峰值月份臭氧年均下降率0.75DU/a.在臭氧分布年平均态基础上,影响臭氧总量分布变化的因素主要有臭氧损耗物质(EESC)、太阳辐射周期(Solar)、准两年振荡(QBO)和厄尔尼诺-南方涛动(ENSO)等.其中,EESC导致臭氧损耗效应随着纬度升高而增大,在从低到高的三个纬度带损耗最大值分别为11DU、16DU和66DU;Solar增强导致臭氧增加,在三个纬度带的增加效应最大值分别为16DU、17DU和19DU;QBO@10hPa和QBO@30hPa对臭氧影响幅度基本在±10DU内波动,只有QBO@10hPa对30°—45°N区域的影响作用达到14DU,值得注意的是QBO影响作用随着纬度变化存在相位差异,在0°—15°N区域臭氧变化与QBO呈现相同相位,而在15°—30°N和30°—45°N区域臭氧变化与QBO呈现相反相位;ENSO对各个纬度带臭氧影响幅度也在±10DU内,ENSO影响作用在不同纬度带也存在相位差异,臭氧总量变化在0°—15°N、15°—30°N区域与ENSO相位相反,在30°—45°N区域与ENSO相位一致.

关 键 词:北太平洋  臭氧总量  EESC  Solar  QBO  ENSO  
收稿时间:2016-02-03

Analysis of total ozone trends and their affecting factors over the North Pacific Ocean
HAN Shuang-Shuang,HUANG Fu-Xiang,CHEN Xi,XIA Xue-Qi.Analysis of total ozone trends and their affecting factors over the North Pacific Ocean[J].Chinese Journal of Geophysics,2016,59(11):3974-3984.
Authors:HAN Shuang-Shuang  HUANG Fu-Xiang  CHEN Xi  XIA Xue-Qi
Institution:1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China; 2. National Satellite Meteorological Center, Beijing 100081, China
Abstract:Based on satellite remote sensing datasets of total ozone during the period of 1979 to 2014, this paper simulates these data using a multivariate linear regression model to investigate the long-term trends of total ozone over the North Pacific Ocean and to assess the impact of each factor on the distribution of the ozone. The results show that the total ozone in the North Pacific Ocean decreased over the years. However, the rates varied with different seasons and latitudes, and the ozone decreased most significantly during the seasons in which the ozone level was at its maximum. In the range of 0°-15°N, the high ozone value appeared in the summer and autumn, during which the mean decline rate was about 0.2DU/a, then reached its peak in August. In the range of 15°-30°N, the high value appeared in the spring and summer, during which the mean decline rate was about 0.22DU/a, then reached its peak in May. In the range of 30°-45°N, the high ozone value appeared in the winter and spring, during which the mean decline rate was about 0.75DU/a, then reachesd its peak in February. The factors influencing the distribution of ozone considered in this article include the equivalent effective stratospheric chlorine (EESC), solar, quasi-biennial oscillation (QBO) and El Niño-southern oscillation (ENSO). Among these, the ozone depletion caused by EESC increases with the increasing latitude, and the maximum losses are 11DU, 16DU and 66DU, respectively.The enhancement of solar will increase the ozone level, and the maximum effects in the three dimensions are 16DU, 17DU and 19DU, respectively. The contributions of QBO@10 hPa and QBO@30 hPa to the ozone are all about ±10DU, except for QBO@10 hPa on 30°-45°N which reaches 14DU. Worth noting is that the ozone changes and QBO have the same phase in the range of 0°-15°N, while in the ranges of 15°-30°N and 30°-45°N they have the opposite phases. The effects of ENSO are present within ±10DU at all latitudes, and show phase differences at different latitudes as well. The ozone changes in the ranges of 0°-15°N and 15°-30°N have opposite phases to ENSO, while those in the range of 30°-45°N are consistent with the phase of ENSO.
Keywords:North Pacific Ocean  Total ozone  EESC  Solar  QBO  ENSO
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号