首页 | 本学科首页   官方微博 | 高级检索  
     检索      

频率域航空电磁数据变维数贝叶斯反演研究
引用本文:殷长春,齐彦福,刘云鹤,蔡晶.频率域航空电磁数据变维数贝叶斯反演研究[J].地球物理学报,2014,57(9):2971-2980.
作者姓名:殷长春  齐彦福  刘云鹤  蔡晶
作者单位:吉林大学地球探测科学与技术学院, 长春 130021
基金项目:国家自然科学基金项目(41274121)、国家重大科研装备研究项目ZDYZ2012-1-03和20130523MTEM05联合资助.
摘    要:传统的梯度反演方法已经广泛应用于频率域航空电磁数据处理中,然而此类方法受初始模型影响较大,且容易陷入局部极小.为解决这一问题,本文采用改进的变维数贝叶斯反演方法实现航空电磁数据反演.该方法根据建议分布对反演模型进行随机采样,并依据接受概率筛选合理的候选模型,最终获得反演模型的概率分布和不确定度信息.为解决贝叶斯反演方法对深部低阻层反演效果不佳的问题,本文通过引入合理加权系数,调整对反演模型约束强度,在很大程度上改善了反演效果.通过对模型统计方法进行改进,在遵循原有模型采样方法和接受标准的基础上,将满足数据拟合要求的模型纳入统计范围,削弱不合理模型对统计结果的干扰.本文最后通过对含有高斯噪声的理论数据和实测数据进行反演,并与Occam反演结果进行对比,验证了该方法的有效性.

关 键 词:航空电磁  频率域  正演  权系数  变维数贝叶斯反演  
收稿时间:2014-03-04

Trans-dimensional Bayesian inversion of frequency-domain airborne EM data
YIN Chang-Chun,QI Yan-Fu,LIU Yun-He,CAI Jing.Trans-dimensional Bayesian inversion of frequency-domain airborne EM data[J].Chinese Journal of Geophysics,2014,57(9):2971-2980.
Authors:YIN Chang-Chun  QI Yan-Fu  LIU Yun-He  CAI Jing
Institution:College of Geo-Exploration Sciences and Technology, Jilin University, Changchun 130021, China
Abstract:Traditional gradient inversion has been widely used in airborne EM data processing. However, the inversions are seriously affected by the starting model and can be easily trapped in local minima. To solve these problems, we apply the trans-dimensional Bayesian inversion in our airborne EM data inversion. In trans-dimensional Bayesian inversion, the candidate models are randomly sampled from the proposed distribution and screened by the probability of acceptance. The probability distribution for the inversion models are finally obtained that contains parameter uncertainties. We further introduce the weighting coefficients to adjust the constraints on inverse models, so that the inversions for deep conductive layer are largely improved. In addition, based on the original sampling and accepting criteria, by improving the statistic method, in which only those models that fit the data are brought into statistics, the disturbances from unreasonable models are weakened. Finally, we prove the validity of the method by contrasting the inversion results of the synthetic data contaminated with gauss noise and field data with Occam method.
Keywords:Airborne EM  Frequency-domain  Forward modeling  Weights  Trans-dimensional Bayesian inversion
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号