首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于纵横波解耦的三维弹性波逆时偏移
引用本文:周熙焱,常旭,王一博,姚振兴.基于纵横波解耦的三维弹性波逆时偏移[J].地球物理学报,2018,61(3):1038-1052.
作者姓名:周熙焱  常旭  王一博  姚振兴
作者单位:1. 中国科学院地质与地球物理研究所 中国科学院页岩气与地质工程重点实验室, 北京 100029;2. 中国科学院地球科学研究院, 北京 100029;3. 中国科学院大学, 北京 100049;4. 中国科学院地质与地球物理研究所 地球与行星物理重点实验室, 北京 100029
基金项目:国家自然科学基金重大项目(41390455)和国家重点基础研究发展计划青年科学家专题(2015CB258500)联合资助.
摘    要:纵横波波场分离是弹性波偏移方法的必要条件,通过纵横波成像的差异可以获取更多地下介质的信息.目前所用的纵横波波场分离方法多采用Helmholtz分解,这样得到的波场不仅物理意义发生了变化,振幅和相位也会发生改变.本文采用纵横波解耦的弹性波方程,将其应用于三维介质,对比分析了纵横波解耦方法相对传统Helmholtz分解方法在相位、振幅上的优势.将该解耦的波场分离方法应用于弹性波逆时偏移,能得到相位、振幅和物理意义不受改变的偏移结果.但是该解耦方法分离得到的纵横波波场均为矢量场,将该波场分离方法用于弹性波逆时偏移,还需要解决矢量场如何得到标量成像结果的问题.本文引入了Poynting矢量,通过Poynting矢量对矢量波场进行标量化,这样就能得到保振幅、相位,且无极性反转的标量PP和PS成像结果.同时针对S波Poynting矢量求取不准确的问题,采用拟S波应力场和S波速度场得到了更加准确的S波Poynting矢量.理论计算证明了本文采用的3D波场解耦的矢量波场分离方法的正确性和引入Poynting矢量对矢量波场进行标量成像的有效性.

关 键 词:纵横波解耦  矢量波场分离  3D  Poynting矢量  标量成像条件  
收稿时间:2017-04-26

3D elastic reverse time migration based on P-and S-wave decoupling
ZHOU XiYan,CHANG Xu,WANG YiBo,YAO ZhenXing.3D elastic reverse time migration based on P-and S-wave decoupling[J].Chinese Journal of Geophysics,2018,61(3):1038-1052.
Authors:ZHOU XiYan  CHANG Xu  WANG YiBo  YAO ZhenXing
Institution:1. Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;2. Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China;3. University of Chinese Academy of Sciences, Beijing 100049, China;4. Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Abstract:Elastic reverse time migration contains information of not only reflected P-wave but also converted S-waves. Converted S-waves have more information of underground, higher resolution, and wider offset. While to get clean PP and PS images, we need to separate P-and S-waves. The traditional P-and S-wave separation method is based on Helmholtz decomposition. It supposes P-waves are no rotation wavefield and S-waves are no divergence wavefield. So, P-waves are calculated by a gradient operator and S-waves calculated by a curl operator. The phase and amplitude information of decomposed waves are changed, because of a space difference operator. We adopt the P-and S-wave decoupled method to separate P-and S-waves. We extend this decoupled method to 3D media and compare with the Helmholtz decomposition method. We find this decoupled method can maintain the phase and amplitude information of separated P-and S-waves. By this decoupled method, the separated P-and S-waves both are vectors. We need to get scalar images from these vector wavefields if we want to use the decoupled method in elastic reverse time migration. We introduce Poynting vector of P-and S-waves to scalarize vector P-and S-waves. Then we use a traditional acoustic reverse time migration imaging condition to get scalar PP and PS images. These images can maintain phase and amplitude information, because we use P-and S-wave decoupled method to separate them. And the imaging results have no polarity inversal problem. But we find the Poynting vector of S-waves are inaccurate because the S-wave stress are interfered by P-waves. So, we use the S-wave quasi-stress tensor to calculate the S-wave Poynting vector. The S-wave quasi-stress are not interfered by P-waves. Finally, the S-wave Poynting vector calculated by S-wave quasi-stress will be more accurate. Numerical examples illustrate the validity of 3D P-and S-wave decoupled separation method and the accuracy of elastic reverse time migration by the Poynting vector.
Keywords:P-and S-wave decoupling  Vector-based wavefields separation  3D  Poynting vector  Scalar imaging condition
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号