首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of Coal Gangue Content on Water Movement and Solute Transport in a China Loess Plateau Soil
Authors:Zhou Beibei  Shao Ming'an  Wen Mingxia  Wang Quanjiu  Robert Horton
Abstract:The mining industry has grown strongly in China in recent decades, resulting in large amounts of coal gangues, which cause water and soil pollution, soil erosion, and various other environmental problems. They are often used in reclamation projects in attempts to restore land damaged by mining, hence they are frequently present (in widely varying proportions) in the topsoil in areas around mines. Their presence can strongly affect key soil variables, including its bulk density, structure, water retention, water movement, and solute transport rates. In the study presented here, the effects of gangue contents on infiltration, saturated hydraulic conductivity, and solute transport parameters of a Chinese Loess plateau soil were examined. The results show that infiltration rates and saturated hydraulic conductivity decreased with increasing gangue content. The Peck–Watson equation modeled these relationships well, but Bouwer–Rice equations provided poorer matches with the acquired data. Cumulative infiltration over time was described well by both the Philip equation and Kostiakov equation. Both the simplified convection–dispersion equation and a two‐region model described the solute transport processes well. In addition, the dispersion increased, while both the Peclet number and mobile water fraction decreased, with increases in gangue contents.
Keywords:Cumulative infiltration  Gangue contents  Saturated hydraulic conductivity  Solute transport
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号