首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improving the inverse compensation method for real‐time hybrid simulation through a dual compensation scheme
Authors:Cheng Chen  James M Ricles
Institution:1. ATLSS Engineering Research Center, Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA 18015, U.S.A.;2. Postdoctoral Research Associate.;3. Bruce G. Johnston Professor.
Abstract:Real‐time hybrid simulation combines experimental testing of physical substructure(s) and numerical simulation of analytical substructure(s), and thus enables the complete structural system to be considered during an experiment. Servo‐hydraulic actuators are typically used to apply the command displacements to the physical substructure(s). Inaccuracy and instability can occur during a real‐time hybrid simulation if the actuator delay due to servo‐hydraulic dynamics is not properly compensated. Inverse compensation is a means to negate actuator delay due to inherent servo‐hydraulic actuator dynamics during a real‐time hybrid simulation. The success of inverse compensation requires the use of a known accurate value for the actuator delay. The actual actuator delay however may not be known before the simulation. An estimation based on previous experience has to be used, possibly leading to inaccurate experimental results. This paper presents a dual compensation scheme to improve the performance of the inverse compensation method when an inaccurately estimated actuator delay is used in the method. The dual compensation scheme modifies the predicted displacement from the inverse compensation procedure using the actuator tracking error. Frequency response analysis shows that the dual compensation scheme enables the inverse compensation method to compensate for actuator delay over a range of frequencies when an inaccurately estimated actuator delay is utilized. Real‐time hybrid simulations of a single‐degree‐of‐freedom system with an elastomeric damper are conducted to experimentally demonstrate the effectiveness of the dual compensation scheme. Exceptional experimental results are shown to be achieved using the dual compensation scheme without the knowledge of the actual actuator delay a priori. Copyright © 2009 John Wiley & Sons, Ltd.
Keywords:real‐time  hybrid simulation  actuator delay  actuator delay compensation  frequency response
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号