首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Earthquake ground motion modeling of induced seismicity in the Groningen gas field
Authors:R Paolucci  I Mazzieri  G Piunno  C Smerzini  M Vanini  AG zcebe
Institution:R. Paolucci,I. Mazzieri,G. Piunno,C. Smerzini,M. Vanini,A.G. Özcebe
Abstract:A physics‐based numerical approach is used to characterize earthquake ground motion due to induced seismicity in the Groningen gas field and to improve empirical ground motion models for seismic hazard and risk assessment. To this end, a large‐scale (20 km × 20 km) heterogeneous 3D seismic wave propagation model for the Groningen area is constructed, based on the significant bulk of available geological, geophysical, geotechnical, and seismological data. Results of physics‐based numerical simulations are validated against the ground motion recordings of the January 8, 2018, ML 3.4 Zeerijp earthquake. Taking advantage of suitable models of slip time functions at the seismic source and of the detailed geophysical model, the numerical simulations are found to reproduce accurately the observed features of ground motions at epicentral distances less than 10 km, in a broad frequency range, up to about 8 Hz. A sensitivity analysis is also addressed to discuss the impact of 3D underground geological features, the stochastic variability of seismic velocities and the frequency dependence of the quality factor. Amongst others, results point out some key features related to 3D seismic wave propagation, such as the magnitude and distance dependence of site amplification functions, that may be relevant to the improvement of the empirical models for earthquake ground motion prediction.
Keywords:earthquake ground motion  induced seismicity  Groningen gas field  high‐performance computing  physics‐based numerical simulations
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号