首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An experimental and numerical investigation into the seismic performance of a multi-storey concentrically braced plan irregular structure
Authors:Daniel P McCrum  B M Broderick
Institution:1. School of Planning, Architecture and Civil Engineering, David Keir Building, Queen’s University Belfast, Belfast, BT9 5AG, UK
2. Department of Civil, Structural and Environmental Engineering, University of Dublin, Trinity College, Dublin, Ireland
Abstract:In this investigation, the seismic torsional response of a multi-storey concentrically braced frame (CBF) plan irregular structure is evaluated numerically and experimentally through a series of hybrid tests. CBF structures have become popular in seismic design because they are one of the most efficient types of steel structures to resist earthquake loading. However, their response under plan irregular conditions has received little focus mostly in part due to their complex behaviour under seismic loading conditions. The majority of research on the seismic response of plan irregular structures is based purely on numerical investigations. This paper provides much needed experimental investigation of the seismic response of a CBF plan irregular structure with the aim of characterising the response of this class of structure. The effectiveness of the Eurocode 8 torsional effects provision as a method of designing for low levels of mass eccentricity is evaluated. Results indicate that some of the observations made by purely numerical models are valid in that; torsionally stiff structures perform well and the stiff side of the structure is subjected to a greater ductility demand compared to the flexible side of the structure. The Eurocode 8 torsional effects provision is shown to be adequate in terms of ductility and interstorey drift however the structure performs poorly in terms of floor rotation. Importantly, stiffness eccentricity occurs when the provision is applied to the structure when no mass eccentricity exists and results in a significant increase in floor rotations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号