首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A systems dynamic model of a coal-based city with multiple adaptive scenarios: A case study of Ordos,China
Authors:XiaoQian Liu  Tao Pei  ChengHu Zhou  YunYan Du  Ting Ma  ChuanJie Xie  Jun Xu
Institution:1.College of Arts and Science of Beijing Union University,Beijing,China;2.State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing,China;3.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application,Nanjing,China
Abstract:Cities based on coal resources have increasingly important social and economic roles in China. Their strategies for sustainable development, however, urgently need to be improved, which represents a huge challenge. Most observers believe that the continued progress of these cities relies on the optimization of scientific adaptive management in which social, economic, and ecological factors are incorporated. A systems perspective that combines policies, management priorities, and long-term policy impacts needs to be applied. To date, however, such an approach has not been adopted, which means it is difficult to implement adaptive management at the regional scale. In this study, we used various situations to develop a multiple adaptive scenario system dynamics model. We then simulated a range of policy scenarios, with Ordos in the Inner Mongolia Autonomous Region as a case study. Simulation results showed that the current strategy is not sustainable and predicted that the system would exceed the environmental capacity, with risks of resource exhaustion and urban decline in 2025–2035. Five critical policy variables, including the urban population carrying capacity, rates of water consumption and water recycling, and expansion of urban land cover, were identified during sensitivity analysis. We developed and compared six socio-economic scenarios. The urban area, represented by the urban population density, seemed to transition through five different stages, namely natural growth, rapid growth, stable oscillation, fading, and rebalancing. Our scenarios suggested that different policies had different roles through each stage. The water use efficiency management policy had a comprehensive far-reaching influence on the system behavior; land urbanization management functions dominated at the start, and population capacity management was a major control in the mid-term. Our results showed that the water recycling policy and the urban population carrying capacity were extremely important, and both should be reinforced and evaluated by the local governments.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号