首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multiple-aged granitoids and related tungsten-tin mineralization in the Nanling Range, South China
Authors:Jun Chen  RuCheng Wang  JinChu Zhu  JianJun Lu  DongSheng Ma
Institution:1. State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210093, China
Abstract:The Nanling metallogenic belt in South China is characterized by well-developed tungsten-tin mineralization related to multiple-aged granitoids. This belt is one of the 5 key prospecting and exploration areas among the 19 important metallogenic targets in China. Important progress has been made in recent years in understanding the Nanling granitoids and associated mineralization, and this paper introduces the latest major findings as follows: (1) there exists a series of Caledonian, Indosinian, and Yanshanian W-Sn-bearing granites; (2) the Sn-bearing Yanshanian granites in the Nanling Range form an NE-SW trending aluminous A-type granite belt that stretches over 350 km. The granites typically belong to the magnetite series, and dioritic micro-granular enclaves with mingling features are very common; (3) the Early Yanshanian Sn- and W-bearing granites possess different petrological and geochemical features to each other: most Sn-bearing granites are metaluminous to weakly peraluminous biotite (hornblende) granites, with zircon ?Hf(t) values of ca. ?2 to ?8, whereas most W-bearing granites are peraluminous two-mica granites or muscovite granites with ?Hf(t) values of ca. ?8 to ?12; (4) based on the petrology and geochemistry of the W-Sn-bearing granites, mineralogical studies have shown that common minerals such as titanite, magnetite, and biotite may be used as indicators for discriminating the mineralizing potential of the Sn-bearing granites. Similarly, W-bearing minerals such as wolframite may indicate the mineralizing potential of the W-bearing granites. Future studies should be focused on examining the internal relationships between the multiple-aged granites in composite bodies, the metallogenic peculiarities of multiple-aged W-Sn-bearing granites, the links between melt evolution and highly evolved ore-bearing felsic dykes, and the connections between granite domes and mineralization.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号