首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparison of a complex rupture model with the precursor asperities of the 1975 HawaiiM s-7.2 earthquake
Authors:D Harvey  M Wyss
Institution:(1) Cooperative Institute for Research in Environmental Sciences, University of Colarado, 80309 Boulder, Colorado;(2) Present address: Science Horizons Inc., 710 Encinitas Blvd., 92024 Encinitas, CA
Abstract:A simplified multiple source model was constructed for the 1975 HawaiiM s=7.2 earthquake by matching synthetic signals with three component accelerograms at two stations located approximately 45 km from the epicenter. Six major subevents were identified and located approximately. The signals of these are larger by factors of 1.4 to 3.2 than that of theM L=5.9 foreshock which occurred 70 minutes before the main rupture and also triggered the SAM-1 recorders at the two stations. Dividing the rupture length (40 km) by the duration of strong ground shaking (sim 50 sec) an, average rupture velocity of 0.8 km/sec (about 25% of S-velocity) is obtained. Thus it is likely that the rupture stopped between subevents. The approximate epicenters of the 6 major subevents, and of the foreshock, support the hypothesis that they were located in high stress asperities which rupture during the main shock, except for the last events which is interpreted as a stopping phase generated at a barrier. These asperities have been previously defined on the basis of differences in the precursor pattern before the mainshock. Thus, it appears that both the details of the precursors and of the main rupture depended critically on the heterogeneous tress distribution in the source volume. This suggests that main rupture initiation points and locations of high rupture accelerations may be identified before the mainshock occurs, based on precursor anomaly patterns. A satisfactory match of synthetic signals with the observations could be obtained only if the aximuth of the fault plane of subevents was rotated from N60°E to N90°E and back to N30°E. These orientations are approximately parallel to the nearest Kilauea rift segments. Hence the slip directions and greatest principal stresses were oriented perpendicular to the rifts everywhere. From this analysis and other work, it is concluded that this fault surface consisted of three types of segments with different strength: hard asperities (radius ap 5 km), soft but lsquobrittlersquo segments between the asperities (radius ap 5 km), and a lsquoviscousrsquo half (10×40 km) which slipped during the mainshock, but where microearthquakes and aftershocks are not common.
Keywords:Hawaii  multiple rupture  asperities
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号