首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Development of shear localization in simulated quartz gouge: Effect of cumulative slip and gouge particle size
Authors:Yaojun Gu  Teng-fong Wong
Institution:(1) Department of Earth and Space Sciences, State University of New York at Stony Brook, NY, U.S.A.;(2) Present address: Institute of Geophysics and Planetary Physics, University of California, Riverside, CA, U.S.A.
Abstract:Frictional sliding experiments were conducted on two types of simulated quartz gouge (with median particle diameters 5 mgrm and 25 mgrm, respectively) at confining pressures ranging from 50 MPa to 190 MPa in a conventional triaxial configuration. To investigate the operative micromechanical processes, deformation texture developed in the gouge layer was studied in samples which had accumulated different amounts of frictional slip and undergone different stability modes of sliding. The spatial patterning of shear localization was characterized by a quantitative measurement of the shear band density and orientation. Shear localization in the ultrafine quartz gouge initiated very early before the onset of frictional sliding. Various modes of shear localization were evident, but within the gouge zoneR 1-shears were predominant. The density of shear localization increased with cumulative slip, whereas the angle subtended at the rock-gouge interface decreased. Destabilization of the sliding behavior in the ultrafine quartz gouge corresponded to the extension ofR 1-shears and formation of boundaryY-shear segments, whereas stabilization with cumulative slip was related to the coalescence ofY-shear segments to form a throughgoing boundary shear. In the coarse quartz gouge, the sliding behavior was relatively stable, probably because shear localization was inhibited by distributed comminution. Two different models were formulated to analyze the stress field within the gouge zone, with fundamentally different predictions on the orientations of the principal stresses. If the rock-gouge interface is assumed to be bonded without any displacement discontinuity, then the maximum principal stress in the gouge zone is predicted to subtend an angle greater than 45° at the interface. If no assumption on displacement or strain continuity is made and if the gouge has yielded as a Coulomb material, then the maximum principal stress in the gouge zone is predicted to subtend an angle less than 45°. If the apparent friction coefficient increases with overall slip (i.e., slip-hardening), then the Riedel shear angle progressively decreases with increasing shear strain within the gouge layer, possibly attaining a zero value which corresponds to a boundaryY-shear. Our quantitative data on shear localization orientation are in reasonable agreement with this second model, which implies the coefficient of internal friction to be about 0.75 for the ultrafine quartz gouge and 0.8 for the coarse gouge. The wide range of orientations for Riedel shear localization observed in natural faults suggests that the orientations of principal stresses vary as much as in an experimental gouge zone.
Keywords:Fault gouge  Riedel shear  nonlinear dynamics  rock friction  orientation of stress  shear localization  stick-slip instability
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号