首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thrust geometries in unconsolidated Quaternary sediments and evolution of the Eupchon Fault, southeast Korea
Authors:Young-Seog  Kim  Joon Young  Park  Jeong Hwan  Kim  Hyeon Cho  Shin and David J  Sanderson
Institution:School of Earth and Environmental Sciences, Seoul National University, Seoul 151-747, Korea (email: ),; Korea Power Engineering Company (KOPEC), Yongin 449-912, Korea and; Department of Earth Science and Engineering, Imperial College, London SW7 2AZ, UK
Abstract:Abstract The Korean peninsula is widely regarded as being located at the relatively stable eastern margin of the Asian continent. However, more than 10 Quaternary faults have recently been discovered in and reported from the southeastern part of the Korean Peninsula. One of these, the Eupchon Fault, was discovered during the construction of a primary school, and it is located close to a nuclear power plant. To understand the nature and characteristics of the Quaternary Eupchon Fault, we carried out two trench surveys near the discovery site. The fault system includes one main reverse fault (N20°E/40°SE) with approximately 4 m displacement, and a series of branch faults, cutting unconsolidated Quaternary sediments. Structures in the fault system include synthetic and antithetic faults, hanging‐wall anticlines, drag folds, back thrusts, pop‐up structures, flat‐ramp geometries and duplexes, which are very similar to those seen in thrust systems in consolidated rocks. In the upper part of the fault system, several tip damage zones are observed, indicating that the fault system propagates upward and terminates in the upper part of the section. Pebbles along the main fault plane show a preferred orientation of long axes, indicating the fault trace. The unconformity surface between the Quaternary deposits and the underlying Tertiary andesites or Cretaceous sedimentary rocks is displaced by this fault with a reverse movement sense. The stratigraphic relationship shows normal slip sense at the lower part of the section, indicating that the fault had a normal slip movement and was reversely reactivated during the Quaternary. The inferred length of the Quaternary thrust fault, based on the relationship between fault length and displacement, is 200–2000 m. The current maximum horizontal compressive stress direction in this area is generally east‐northeast–west‐southwest, which would be expected to produce oblique slip on the Eupchon Fault, with reverse and right‐lateral strike‐slip components.
Keywords:Eupchon  geometry  Quaternary  reactivation  southeast Korea  thrust fault  unconsolidated sediment
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号