首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Estimation of surface runoff and water‐covered area during filling of surface microrelief depressions
Authors:B Hansen
Abstract:During the filling of surface microrelief depressions the precipitation excess (precipitation minus infiltration and interception) is divided between surface storage and runoff, i.e. runoff starts before the surface depressions are filled. Information on the division of precipitation excess is needed for modelling surface runoff during the filling of surface depressions. Furthermore, information on the surface of the area covered with water is needed for calculating infiltration of water stored in soil surface depressions. Thirty‐two soil surface microreliefs were determined in Danish erosion study plots. The slope was c. 10% for all plots. Data were treated initially by removing the slope, after which 20 ‘artificial’ slopes (1–20%) were introduced producing 640 new data sets. Runoff during filling of the microrelief storage was calculated for each of the 640 data sets using a model developed for calculating surface storage and runoff from grid elevation measurements. Runoff started immediately after the first addition of water for all data sets. On a field scale, however, runoff has to travel some distance as overland flow and storage in smaller and larger depressions below the runoff initiation point must be taken into consideration. The runoff increases by intermittent steps. Whenever a depression starts to overflow to the border of the plot, the runoff jumps accordingly. In spite of the jumps, the distribution between surface storage and runoff was closely related to the quotient between precipitation excess and depression storage capacity. Surface area covered with water was exponentially related to the amount of water stored in surface depressions. Models for calculating surface storage and runoff from grid elevation measurements are cumbersome and require time‐consuming measurements of the soil surface microrelief. Therefore, estimation from roughness indices requiring fewer measurements is desirable. New improved equations for such estimations are suggested. Copyright © 2000 John Wiley & Sons, Ltd.
Keywords:depression storage  surface roughness  surface runoff  microrelief
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号