首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An improved method for single flow direction calculation in grid digital elevation models
Authors:Sanghoon Shin  Kyungrock Paik
Institution:1. School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul, South Korea;2. Currently at Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
Abstract:This paper presents improvements to the global D8 (GD8) method for calculating single flow directions in a grid digital elevation model. Flow directions computed from grid digital elevation models serve as the foundation for much of the analysis and modeling of hydrological processes that are driven by topographic gradients. The literature includes both single flow direction methods, where flow goes to only one downslope cell, and multiple flow direction methods that apportion flow among multiple downslope cells. Among single flow direction methods, the standard D8 method, in which the flow direction is set based on the steepest local slope, results in bias on surfaces that do not align with the grid directions. Efforts to address this problem have led to the development of extended methods that account for elevation values further upslope in determining flow directions. We have identified discrepancies in one such method, GD8, and have examined ways to resolve these discrepancies. An improvement to GD8, named iGD8, is presented that allows replacing a reference cell from which path deviations are accumulated and that considers horizontal path deviation rather than global slope as a flow direction criterion. The improved method is found to be effective in resolving the problems encountered with GD8 and to be more efficient than a previously proposed alternative method (least transversal deviation (LTD) based D8, namely D8‐LTD) that uses recursive searching for the largest upstream area when multiple flow paths converge. The proposed improved GD8 method offers the opportunity for improved analysis and modeling of topographically driven hydrological processes by providing better foundational flow directions for these analyses.
Keywords:DEM  flow path extraction  geographic information systems  river network  terrain analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号