首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Composite suspended sediment particles in river systems: their incidence,dynamics and physical characteristics
Authors:J C Woodward  D E Walling
Institution:1. Geography, School of Environment and Development, The University of Manchester, Manchester, M13 9PL, UK;2. Department of Geography, University of Exeter, Exeter, EX4 4RJ, UK
Abstract:Most of the existing data on the effective particle size characteristics of fluvial suspended sediment derive from instantaneous sampling methods that may not be representative of the overall suspended sediment loads. This presents difficulties when there is a need to incorporate effective particle size data into numerical models of floodplain sedimentation and sediment‐associated contaminant transfer. We have used a field‐based water elutriation apparatus (WEA) to assemble a large (36 flood) database on the time‐integrated nature of the effective and absolute particle size characteristics of suspended sediment in four subcatchments of the River Exe basin of southwest England. These catchments encompass a wide range of terrains and fluvial environments that are broadly representative of much of the UK and temperate, low relief northwest Europe. The WEA provides important data on the physical characteristics of composite particles that are not attainable using other methods. This dataset has allowed, for the first time, detailed interbasin comparisons of the time‐integrated particle size characteristics of suspended sediment and reliable estimates of the contribution of five effective size classes to the mean annual suspended sediment load of the study catchments. The suspended sediment load of each river is dominated by composite rather than primary particles, with, for example, almost 60% (by mass) of the sediment load of the River Exe at Thorverton transported as composite particles > 16 µm in size. All the effective size classes contain significant clay components. A key outcome of this study is the recognition that each catchment has a distinctive time‐integrated effective particle size signature. In addition, the time‐integrated effective particle size characteristics of the suspended loads in each of the catchments display much greater spatial variability than the equivalent absolute particle size distributions. This indicates that the processes producing composite particles vary significantly between these catchments, and this has important implications for our understanding of the dynamics of suspended sediment properties. Copyright © 2007 John Wiley & Sons, Ltd.
Keywords:suspended sediment  composite particles  aggregation  flocculation  particle size  water elutriation  time‐integrated sampling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号