首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electromagnetic Studies Of The Lithosphere And Asthenosphere
Authors:Graham Heinson
Institution:(1) School of Earth Sciences, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
Abstract:In geodynamic models of the Earth's interior, the lithosphere and asthenosphere are defined in terms of their rheology. Lithosphere has high viscosity, and can be divided into an elastic region at temperatures below 350 °C and an anelastic region above 650 °C. Beneath the lithosphere lies the ductile asthenosphere, with one- to two-orders of magnitude lower viscosity. Asthenosphere represents the location in the mantle where the melting point (solidus) is most closely approached, and sometimes intersected. Seismic, gravity and isostatic observations provide constraints on lithosphere-asthenosphere structure in terms of shear-rigidity, density and viscosity, which are all rheological properties. In particular, seismic shear- and surface-wave analyses produce estimates of a low-velocity zone (LVZ) asthenosphere at depths comparable to the predicted rheological transitions. Heat flow measurements on the ocean floor also provide a measure of the thermal structure of the lithosphere.Electromagnetic (EM) observations provide complementary information on lithosphere-asthenosphere structure in terms of electrical conductivity. Laboratory studies of mantle minerals show that EM observations are very sensitive to the presence of melt or volatiles. A high conductivity zone (HCZ) in the upper mantle therefore represents an electrical asthenosphere (containing melt and/or volatile) that may be distinct from a rheological asthenosphere and the LVZ. Additionally, the vector propagation of EM fields in the Earth provides information on anisotropic conduction in the lithosphere and asthenosphere. In the last decade, numerous EM studies have focussed on the delineation of an HCZ in the upper mantle, and the determination of melt/volatile fractions and the dynamics of the lithosphere-asthenosphere. Such HCZs have been imaged under a variety of tectonic zones, including mid-ocean ridges and continental rifts, but Archaean shields show little evidence of an HCZ, implying that the geotherm is always below the mantle solidus. Anisotropy in the conductivity of oceanic and continental lithosphere has also been detected, but it is not clear if the HCZ is also anisotropic. Although much progress has been made, these results have raised new and interesting questions of asthenosphere melt/volatiles porosity and permeability, and lithosphere-upper mantle heterogeneity. It is likely that in the next decade EM will continue to make a significant contribution to our understanding of plate tectonic processes.
Keywords:lithosphere  asthenosphere  electromagnetism  magnetotellurics  electrical conductivity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号