首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the excitation of short-term variations in the length of the day and polar motion
Authors:Raymond Hide
Institution:(1) Geophysical Fluid Dynamics Laboratory, Meteorological Office (Met O 21), RG12 2SZ Bracknell, Berkshire, England, UK
Abstract:Variations in the distribution of mass within the atmosphere, and changes in the pattern of winds produce fluctuations in all three components of the angular momentum of the atmosphere on time-scales upwards of a few days. It, has been shown that variations in theaxial component of atmospheric angular momentum during the Special Observing Periods in the recent lsquoFirst GARP Global Experimentrsquo (FGGE, where GARP is the Global Atmospheric Research Programme) are well correlated with short-term changes in the length of the day. They are consistent with the total angular momentum of the atmosphere and lsquosolidrsquo Earth being conserved on short timescales (allowing for lunar and solar effects), without requiring significant angular momentum transfer between the Earth's liquid core and solid mantle on timescales of weeks or months. It has also been shown that fluctuations, in the equatorial components of atmospheric angular momentum make a major contribution to the observed wobble of the instantaneous pole of the Earth's rotation with respect to the Earth's crust. A necessary step in the investigation was a re-examination of the underlying theory of non-rigid body rotational dynamics and angular momentum exchange between the atmosphere and solid Earth. Since only viscous or topographic coupling between the atmosphere and solid Earth can transfer angular momentum, no atmospheric flow that everywhere satisfied inviscid equations (including, but not solely, geostrophic flow) could affect the rotation of a spherical solid Earth. New lsquoeffective angular momentum functionsrsquo were introduced in order to exploit the available data and allow for rotational and surface loading deformation of the Earth. A theoretical basis has now been established for future routine determinations of atmopheric, angular momentum fluctuations for the purpose of meteorological and geophysical research, including the assessment of the extent to which movements in the solid Earth associated with very large earthquakes contribute to the excitation of the Chandlerian wobble.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号