首页 | 本学科首页   官方微博 | 高级检索  
     检索      


ESTIMATING PRESENT SLIP RATE OF THE FAULTS IN THE WEIHE GRABEN USING ENVISAT ASAR DATA
Authors:CHEN Jian-long  ZHANG Dong-li  ZHOU Yu
Institution:1)Guangdong Provincial Key Laboratory of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275, China;2)Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai), Zhuhai 519082, China
Abstract:Most great(M≥8)earthquakes during modern times have occurred in interplate regions or major continental collision zones, such as Sumatra, the Japanese island arc or the San Andreas fault zone. Continental faults slip at a much lower rate than boundary faults, but they also have the potential of generating large earthquakes. For example, the 2008 Wenchuan earthquake with a magnitude of 7.9, the slip rate of seismic fault is less than 3mm/a. They also have the potential to be significantly deadlier than those on plate boundaries because of the long repeat times and lack of preparedness. The January 23rd 1556 Huaxian earthquake in Shaanxi Province, central China, is the deadliest in history with an estimated death toll of ~830 000 from building collapse, land-sliding, famine, and disease. The earthquake occurred in the graben of the Weihe River.
The Weihe Graben in Shaanxi Province has recorded multiple earthquakes in history, whereas most active faults within the graben have a low slip rate over geological times (~1mm/a). The slip rate of faults is an important parameter for assessing the risk of earthquakes and the interval between major earthquake recurrences. In order to obtain the quantitative information of faults slip rate, traditional geological methods or geodetic observation techniques can be used. Interferometric synthetic aperture radar(InSAR), as a modern geodetic observation technology, has the characteristics of all-weather and day-and-night imaging capability, wide spatial coverage, fine resolution, and high measurement accuracy. InSAR offers the potential to measure interseismic slip rates on faults at a resolution of millimetres per year. In this study, we use InSAR data to analyze the present deformation of the Kouzhen-Guanshan, Weihe and North Qinling faults in the central part of the graben.
We collected 32 European Space Agency(ESA's)Envisat ASAR images from descending track 161 between 2003 and 2010, and processed them using ROI_PAC. The precise orbit determination from the Delft Institute for Earth Oriented Space Research(DEOS)was applied to correct for orbital effects. The topographic contribution was simulated and removed using the 90m resolution Shuttle Radar Topography Mission(SRTM)Digital Elevation Model(DEM)from CGIAR-SCI. Each interferogram was downsampled to 64 looks in the range direction (1 280m). Before phase unwrapping, a weighted power spectrum filter was applied to improve the signal-to-noise ratio. The branch-cut method was used for phase unwrapping. Phase unwrapping errors were checked by summing around a closed loop. All the major unwrapping errors were identified and corrected manually. We obtained a total of 98 interferograms with a spatial baseline of smaller than 300m, and selected 33 interferograms whose coherence is well preserved for time-series analysis. The time-series analysis was implemented using the π-RATE software package. It uses the geocoded interferograms from ROI_PAC to create a minimum spanning tree(MST)network, from which the orbital and topographically-correlated atmospheric errors are estimated. The MST network connects all epochs with the most coherent interferograms,including no closed loops of interferograms. The network approach is able to improve the estimation of orbital error by ~9% compared to the independent interferograms approach. The orbital errors are empirically modelled as planar or quadratic ramps. The topographically-correlated atmospheric correction was applied to each interferogram after having corrected for the orbital errors. Following creating a minimum spanning tree network, correcting for orbital and topographically-correlated atmospheric errors, and calculating the covariance matrix, we obtained the 7-year average slip rate of the faults that we are focused on.
Our results show that the faults across the Weihe graben all have a small slip rate of less than 2mm/a. The Kouzhen-Guanshan Fault does not show any evident deformation signal. The Weihe Fault seems to show 1mm/a normal faulting in the satellite line-of-sight direction. In addition, we find ~10mm/a surface subsidence of the Xi'an City between 2003 and 2010. We use the stable Ordos block as a reference to assess the accuracy of our InSAR time-series analysis. Assuming the Ordos block has no internal deformation, we calculated the error of the InSAR rate map to be (-0.1±1)mm/a, indicating that our result is reliable. This paper presents a preliminary result of the present deformation of the Weihe Graben. InSAR is a powerful technique for monitoring active faults on a timescale of tens of years, and can be used for seismic hazard assessment in the future.
Keywords:Weihe Graben  interferometric synthetic aperture radar  fault slip rate  
点击此处可从《地震地质》浏览原始摘要信息
点击此处可从《地震地质》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号